scholarly journals Ecophysiology, quality, and mycorrhizal dependency in Musa spp. (cv. Grand naine) seedlings

2021 ◽  
Vol 43 (4) ◽  
Author(s):  
Ricardo Fernando da Rui ◽  
Silvia Correa Santos ◽  
Elaine Reis Pinheiro Lourente ◽  
Silvana de Paula Quintão Scalon ◽  
Jolimar Antonio Schiavo ◽  
...  

Abstract The use of alternative technologies involving biological processes, with economic and ecological gains, is desirable for both the expansion of Musa spp. farming and the renovation of areas with low yields. Arbuscular mycorrhizal fungi (AMF) can stimulate plant growth, especially by increasing the absorption of phosphorus (P) and other nutrients. This study analyzes the influence of AMF on the growth and physiology of micropropagated Musaspp. plants submitted to doses of P. The experimental design was randomized blocks, in a 5 x 5 factorial arrangement, in which the factors were inoculation with AMF (Glomus clarum, Gigaspora margarita, , Gigaspora albida,Clareoideoglomus etunicatum, and the control without AMF) and five doses of P (0, 50, 100, 200, and 400 mg kg-1), with four replicates. The application of P doses increased growth in micropropagated Musaspp. seedlings, regardless of mycorrhizal inoculation. The highest rates of mycorrhizal colonization occurred at the lowest P doses, and the dose of 50 mg kg-1 P provided better conditions for mycorrhizal formation in all AMF species under study. The symbioses with AMF, as well as the use of P, increased photosynthesis rate, thus favoring the growth, development, and quality of Musa spp. seedlings. Species G. clarum, C. etunicatum, and G. margarita were the most promising for plant growth.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Budi Sri Wilarso ◽  
CAHYO WIBOWO ◽  
ANDI SUKENDRO ◽  
HABIB SATRIO BEKTI

Abstract. Budi SW, Wibowo C, Sukendro A, Bekti HS. 2020. Growth improvement of Falcataria moluccana inoculated with MycoSilvi grown in post-mining silica sand soil medium amended with soil ameliorants. Biodiversitas 21: 422-427. High aluminum content in soil of post-mining silica sand area inhibits plant growth. MycoSilvi is an inoculum of Arbuscular Mycorrhizal Fungi (FMA) enriched with Mycorrhizal Helper Bacteria (MHBs) which plays an important role for improving plant growth in unfertile soil medium. The aims of this research were to analyze the growth response of Falcataria moluccana (Miq.) Barneby & JW Grimes) seedlings treated with MycoSilvi and soil ameliorants (compost and lime) in post-mining silica sand soil medium. The randomized complete design with factorial scheme was used in this study. The results showed that the interactions of MycoSilvi and Soil ameliorant significantly increased height, diameter, biomass and mycorrhizal colonization of F. moluccana. Combination of MycoSilvi variant 3 and lime increased height, diameter, and biomass of F. moluccana by 965%, 147%, and 1427% respectively, as compared to those of control plants. The mycorrhizal roots colonization in those treatments was 98%. The addition of compost and lime increased pH and decreased Aluminum and Fe of the soil medium. F. moluccana seedlings have high mycorrhizal dependency on post-mining silica sand soil media. These results indicate prospective uses of MycoSilvi and soil ameliorants for improving plant growth in unfertile soil medium, including soil in post-mining area.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 644
Author(s):  
Roman Andrzejak ◽  
Beata Janowska

This study was conducted to assess the influence of gibberellic acid (GA3) and arbuscular mycorrhizal fungi (AMF) on the flowering and quality of Zantedeschia albomaculata (Hook.) Baill ‘Albomaculata’ plants. Before planting, the rhizomes were soaked in water or an aqueous solution of GA3 at a concentration of 150 mg dm−3 for 30 min. A mixture of AMF was applied to the rhizomes a week after planting. The AMF treatment increased the yield of inflorescences of the ‘Albomaculata’ cultivar by 100%. AMF and GA3 had a favourable effect on the quality of inflorescences, expressed by the length of peduncles, whereas AMF individually positively affected the length of the spathes. AMF and GA3 had no effect on the level of macroelements in calla lily leaves, with the exception of calcium (Ca). The leaves of mycorrhized plants had a high content of sodium (Na) and micronutrients, except for iron (Fe). The results of the study showed that GA3 could be replaced by mycorrhizal inoculation when applied to Zantedeschia plants.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 721
Author(s):  
Omiros Antoniou ◽  
Antonios Chrysargyris ◽  
Panayiota Xylia ◽  
Nikolaos Tzortzakis

Strawberry is considered as a fruit of high nutritional value, with appreciated benefits on human health. Arbuscular mycorrhizal fungi (AMF) are commonly used plant symbionts that affect plant growth and its effectiveness is plant species specific. Additionally, selenium (Se) projects a special interest to humans for its antioxidant specialties, and to plants, because of the potential to make them grow faster when added to the nutrient solution. Nonetheless, the performance of arbuscular mycorrhizal fungi (AMF) in Se biofortification in strawberry is unexplored. The purpose of the present study experiment was to determine whether mycorrhizal inoculation of AMF can have a positive impact on growth and quality of strawberries, and whether Se contributes in this effort or will adversely affect the plants. Four Se concentrations (0, 1, 5 and 10 mg L−1) in the nutrient solution, with or without mycorrhizal inoculation of AMF to the root system, were evaluated. Results demonstrated that Se of 10 mg L−1 negatively affected plant growth, photosynthetic rates, decreased fruit firmness and total soluble solids, induced oxidative stress in fruits and affected nutrient accumulation in different plant organs. Mycorrhizal inoculation of AMF mainly stimulated antioxidative mechanisms of the fruits and increased nutrient accumulation for plants grown at high Se levels. Based on our observations, mycorrhizal inoculation can enhance the nutritional value of strawberry fruits and strawberry plants seem to be a strong candidate for Se biofortification, allowing the rise of Se of the consumers’ intake.


2019 ◽  
Vol 18 (3) ◽  
pp. 17-33 ◽  
Author(s):  
Leo Sabatino ◽  
Fabio D’anna ◽  
Livio Torta ◽  
Giorgio Ferrara ◽  
Giovanni Iapichino

Mycorrhizal fungi are gaining interest in the floriculture sector due to the beneficial effects on a crop performance and ornamental quality. The aim of the current study was to assess the effect of inoculation with the arbuscular mycorrhizal (AM) fungi Rhizophagus irregularis on ornamental quality of Begonia × semperflorens-cultorum grown in two different protected cultivation systems: a shadehouse or glasshouse. The inoculated plants incurred a significant increase of plant height by 34.6%, lateral shoot length by 27.9%, number of lateral shoots by 41.2%, number of flowers per plant by 102.9%, flower diameter by 27.5%, and stems dry weight by 263.6%. High temperatures in the glasshouse negatively affected the AM root colonization. On the contrary, shading induced higher mycorrhizal colonization (48.6%) and increased plant height, number of lateral shoots, number of flowers per plant and flower diameter compared to the glasshouse environment. Taking all together, our results clearly demonstrated that mycorrhizal inoculation at transplanting and shading may be beneficial to floriculture growers wishing to produce high quality B. semperflorens-cultorum plants during the spring-summer season.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2021 ◽  
Vol 13 (3) ◽  
pp. 1226
Author(s):  
Ana Cruz-Silva ◽  
Andreia Figueiredo ◽  
Mónica Sebastiana

Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.


Sign in / Sign up

Export Citation Format

Share Document