scholarly journals Survey of Phaeomoniella chlamydospora in vineyard weeds

2018 ◽  
Vol 44 (3) ◽  
pp. 218-222
Author(s):  
Pedro Siefer Raggio Vergaças ◽  
Ana Beatriz Monteiro Ferreira ◽  
Daniel Andrade de Siqueira Franco ◽  
Luís Garrigós Leite ◽  
Wagner Narciso Campos ◽  
...  

ABSTRACT Petri disease is serious, complex and difficult to control in vines worldwide. The main causal agent of this disease is the fungus Phaeomoniella chlamydospora. This fungus also occurs in the vineyard weed Convolvulus arvensis. In Brazil, this fungus was found only in grapevines. Thus, the aim of the present study was to carry out a phytosociological survey of weeds in an area with different vine rootstocks, as well as in a field of seedlings production, in an experimental area with vines and in different areas with commercial vineyards, besides verifying which weed species could be hosting the fungus P. chlamydospora. For the phytosociological survey of weeds, a square was randomly cast ten times at the site, followed by counting, identification and sampling of all species. To verify host species of the fungus, vascular tissue of plants was isolated in culture media and DNA extraction from the same plant tissue was carried out followed by PCR with specific primers of the fungus for the elongation factor gene (Pchlamy-EF-F 5’-CTCATTATCACATTTTGCTGC-3’ and Pchlamy-EF-R 5’-GAGAACAGTCAGTGATGAGC-3’). Considering all surveyed fields, 46 weed species were detected in 17 families, especially Asteraceae and Poaceae, which had the largest number of species. Using conventional or molecular methods, the fungus P. chlamydospora was not detected infecting weeds, which highlights that Petri disease occurs only in grapevines.

Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 803-810 ◽  
Author(s):  
C. Agustí-Brisach ◽  
D. Gramaje ◽  
M. León ◽  
J. García-Jiménez ◽  
J. Armengol

Weeds were sampled in grapevine rootstock mother fields, open-root field nurseries, and commercial vineyards of Albacete, Alicante, Castellón, Murcia, and Valencia provinces in Spain between June 2009 and June 2010 and evaluated as potential hosts of black-foot and Petri disease pathogens. Isolations were conducted in the root system and internal xylem tissues for black-foot and Petri disease pathogens, respectively. Cylindrocarpon macrodidymum was successfully isolated from the roots of 15 of 19 weed families evaluated and 26 of 52 weed species. Regarding Petri disease pathogens, one isolate of Phaeomoniella chlamydospora was obtained from Convolvulus arvensis, and three isolates of Cadophora luteo-olivacea were obtained from Bidens subalternans, Plantago coronopus, and Sonchus oleraceus. Pathogenicity tests showed that Cylindrocarpon macrodidymum isolates obtained from weeds were able to induce typical black-foot disease symptoms. When inoculated in grapevines, isolates of Cadophora luteo-olivacea and Phaeomoniella chlamydospora were also shown to be pathogenic on grapevine cuttings. Our ability to recover grapevine pathogens from vineyard weeds and to demonstrate pathogenicity of recovered strains on grape suggests that these weeds may serve as a source of inoculum for infection of grapevine.


1998 ◽  
Vol 64 (3) ◽  
pp. 1157-1160 ◽  
Author(s):  
Marc Vaitilingom ◽  
Francois Gendre ◽  
Pierre Brignon

ABSTRACT A fast, sensitive, and target contaminant-modulable method was developed to detect viable bacteria, molds, and yeasts after heat treatment. By reverse transcriptase PCR with elongation factor gene (EF-Tu or EF-1α)-specific primers, the detection level was 10 cells ml of milk−1. The simplicity and rapidity (4 h) of the procedure suggests that this method may be easily transposable to other foods and other contaminants.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 469-482 ◽  
Author(s):  
J. R. Úrbez-Torres ◽  
P. Haag ◽  
P. Bowen ◽  
D. T. O'Gorman

Esca and Petri disease are two economically important grapevine diseases worldwide. This study reports for the first time the occurrence of both diseases on grapevines in British Columbia (BC) and subsequently in Canada. Visual assessment of 55,699 vines in 118 vineyards revealed a low incidence of esca with only 104 (0.2%) vines showing foliar symptoms. Young vine decline (YVD) was observed in 1,910 (7.8%) of 24,487 monitored young vines and in 52 (8%) of 654 young vines used as re-plants in mature vineyards. In 8 of 51 monitored young vineyards, YVD-affected vines ranged between 15 and 55%. Morphological studies along with DNA analyses of the ITS1-5.8S-ITS2, and part of the β-tubulin, actin, and translation elongation factor 1-α gene regions, allowed us to identify Cadophora luteoolivacea, Phaeomoniella chlamydospora, Phaeoacremonium iranianum, Togninia fraxinopennsylvanica, Togninia minima, and the novel species Phaeoacremonium canadense and Phaeoacremonium roseum from esca and Petri disease infected vines in BC. This study includes for the first time the EF1-α DNA marker in Phaeoacremonium spp. delineation. Pathogenicity studies showed all seven fungi to cause vascular symptoms similar to those observed in esca and Petri disease infected vines. Additionally, the “tiger-stripes” foliar symptom of esca was successfully reproduced when healthy potted vines were inoculated with BC isolates of Pa. chlamydospora, Pm. canadense, Pm. iranianum, T. fraxinopennsylvanica, and T. minima.


Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 63-67 ◽  
Author(s):  
R. Bradley Lindenmayer ◽  
Scott J. Nissen ◽  
Philip P. Westra ◽  
Dale L. Shaner ◽  
Galen Brunk

Field bindweed is extremely susceptible to aminocyclopyrachlor compared to other weed species. Laboratory studies were conducted to determine if absorption, translocation, and metabolism of aminocyclopyrachlor in field bindweed differs from other, less susceptible species. Field bindweed plants were treated with 3.3 kBq14C-aminocyclopyrachlor by spotting a single leaf mid-way up the stem with 10 µl of herbicide solution. Plants were then harvested at set intervals over 192 h after treatment (HAT). Aminocyclopyrachlor absorption reached a maximum of 48.3% of the applied radioactivity by 48 HAT. A translocation pattern of herbicide movement from the treated leaf into other plant tissues emerged, revealing a nearly equal aminocyclopyrachlor distribution between the treated leaf, aboveground tissue, and belowground tissue of 13, 14, and 14% of the applied radioactivity by 192 HAT. Over the time-course, no soluble aminocyclopyrachlor metabolites were observed, but there was an increase in radioactivity recovered bound in the nonsoluble fraction. These results suggest that aminocyclopyrachlor has greater translocation to belowground plant tissue in field bindweed compared with results from other studies with other herbicides and other weed species, which could explain the increased level of control observed in the field. The lack of soluble metabolites also suggests that very little metabolism occurred over the 192 h time course.


2018 ◽  
Vol 6 (4) ◽  
pp. 329-332
Author(s):  
Milić Vojinović ◽  
Jelica Živić ◽  
Sanja Perić ◽  
Miroljub Aksić

Ruderal flora, as well as the vegetation that flora forms, represent an extremely dynamic floristic-vegetation complex and arean integral part of the most immediate living and working environment of human. It is formed and developed mainly in human settlements, as well as in the other anthropogenic environments that are occasionally or permanently under direct or indirect influence of various forms of human activity. Ruderal vegetation is found not only directly around the settlements, but also around all urban and accompanying facilities: along roads, paths and fences around houses, yards, walls and roofs, in avenues, on ruins, construction sites, landfills, along railway tracks, road and defense embankments, on wet and nitrified banks of rivers, near human settlements, in abandoned lawns, on the street walks with sandy areas, cemeteries, in degraded pastures, forests, etc. This essay presents the distribution and representation of economically harmful, invasive and quarantine weed species (Abutilon theophrasti, Agropyrumrepens, Amaranthusretroflexus, Calystegiasepium, Cirsiumarvense, Chenopodium album, Chenopodiumhybridum, Convolvulus arvensis, Cynodondactylon, Daturastramonium, Sonchusarvensis, Sorghum halepense, Xanthium strumarium…) at ten sites in the Nisava district. The assessment of species representation was done in two shootings (May and August) according to scale 1-4. The proper selection of herbicides depends, in a large extent, on the presence of dominant weed species and on the time of application.


Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1285-1285 ◽  
Author(s):  
J. Auger ◽  
M. Esterio ◽  
I. Pérez ◽  
W. D. Gubler ◽  
A. Eskalen

Phaeomoniella chlamydospora (W. Gams, Crous. M.J. Wingfield & L. Mugnai) Crous & Gams (= Phaeoacremonium chlamydosporum) was isolated during the growing seasons of 2003-2004 from roots, trunks, and cordons of grapevines, including cvs. Cabernet Sauvignon, Merlot, Pinot noir, Thompson seedless, Ruby seedless and root stock 3309C, and Kober 5BB, from 10 locations in V, VI, VII, and metropolitan regions of Chile. P. chlamydospora was isolated from 82% of samples from vines 2 to 18 years old that showed decline symptoms in the field. Isolates were identified on the basis of a previous description (1) and internal transcribed spacer (ITS1-5.8S-ITS2) rDNA sequences identical to those of P. chlamydospora isolated from Vitis vinifera (culture CBS 22995, GenBank Accession No. AF 197973). P. chlamydospora is established as a member of the petri and esca disease complex and as a pathogen of grapevines (2,3). Pathogenicity tests were completed by injecting into the pith of 50 single-node, rooted cuttings of Pinot noir and 3309C, approximately 20 μl of a 106 conidia per ml suspension, obtained from four isolates from Chile and one from California. Ten control cuttings of Pinot noir and 3309C were injected with an equal volume of sterile distilled water. Twenty-four weeks after inoculations, all P. chlamydospora-inoculated cuttings exhibited dark streaking of the vascular tissue extending 40 to 45 mm from the point of inoculation. The vascular streaking observed in inoculated plants was identical to symptoms observed in declining vines in the vineyard. No symptoms were observed in the controls. P. chlamydospora was isolated from the region of vascular streaking in 85% of inoculated cuttings. P. chlamydospora was not isolated from the water-treated controls. The reisolated P. chlamydospora was verified with means of morphological characters and polymerase chain reaction amplification with the species-specific primers (3). P. chlamydospora is widespread and readily isolated from declining grapevines in Chile and other grape growing regions of the world. To our knowledge, this is the first report of P. chlamydospora from the cultivars cited above in Chile. References: (1) M. Groenewald et al. Mycol. Res. 105:651, 2001. (2) L. sparapano et al. Phytopathol. Mediterr. (Suppl.)40:376, 2001. (3) S. Tegli et al. Phytopathol. Mediterr. 39:134, 2000.


Plant Disease ◽  
2019 ◽  
Vol 103 (2) ◽  
pp. 345-356 ◽  
Author(s):  
Yosra Ahmed ◽  
Jacqueline Hubert ◽  
Céline Fourrier-Jeandel ◽  
Megan M. Dewdney ◽  
Jaime Aguayo ◽  
...  

Elsinoë fawcettii, E. australis, and Pseudocercospora angolensis are causal agents of citrus scab and spot diseases. The three pathogens are listed as quarantine pests in many countries and are subject to phytosanitary measures to prevent their entry. Diagnosis of these diseases based on visual symptoms is problematic, as they could be confused with other citrus diseases. Isolation of E. fawcettii, E. australis, and P. angolensis from infected tissues is challenging because they grow slowly on culture media. This study developed rapid and specific detection tools for the in planta detection of these pathogens, using either conventional PCR or one-tube multiplex real-time PCR. Primers and hybridization probes were designed to target the single-copy protein-coding gene MS204 for E. fawcettii and E. australis and the translation elongation factor (Tef-1α) gene for P. angolensis. The specificity of the assays was evaluated by testing against DNA extracted from a large number of isolates (102) collected from different citrus-growing areas in the world and from other hosts. The newly described species E. citricola was not included in the specificity test due to its unavailability from the CBS collection. The detection limits of conventional PCR for the three pathogens were 100, 100, and 10 pg μl−1 gDNA per reaction for E. fawcettii, E. australis, and P. angolensis, respectively. The quadruplex qPCR was fully validated assessing the following performance criteria: sensitivity, specificity, repeatability, reproducibility, and robustness. The quadruplex real-time PCR proved to be highly sensitive, detecting as low as 243, 241, and 242 plasmidic copies (pc) μl−1 of E. fawcettii, E. australis, and P. angolensis, respectively. Sensitivity and specificity of this quadruplex assay were further confirmed using 176 naturally infected citrus samples collected from Ethiopia, Cameroon, the United States, and Australia. The quadruplex assay developed in this study is robust, cost-effective, and capable of high-throughput detection of the three targets directly from citrus samples. This new detection tool will substantially reduce the turnaround time for reliable species identification and allow rapid response and appropriate action.


Weed Science ◽  
1973 ◽  
Vol 21 (2) ◽  
pp. 135-138 ◽  
Author(s):  
R. G. Harvey ◽  
T. J. Muzik

Two clones of field bindweed (Convolvulus arvensisL.) which differed in their susceptibility to (2,4-dichlorophenoxy)acetic acid (2,4-D) under field and greenhouse conditions also exhibited similar differences when stem cells were cultured in liquid and agar media. Amino acids added to the culture media altered the response to 2,4-D. Glutamic acid increased the tolerance of the susceptible (S) clone, but reduced the tolerance of the resistant (R) clone. Glutamine increased the susceptibility of the S clone to a much greater degree than it did the R clone. No significant differences were noted in the rates of absorption of metabolism of 2,4-D by the two clones. Glutamine increased and glutamic acid decreased 2,4-D absorption by both clones. Levels of nitrate reductase activity (NRA), soluble protein (SP), and gross RNA (GR) increased in the S tissues but decreased or remained constant in the R tissues exposed to 4.5 × 10−5M 2,4-D. Correlations between 2,4-D susceptibility and NRA demonstrated a relationship between the effects of 2,4-D and nitrogen metabolism. Differential binding of 2,4-D within the cells appears to be the most likely explanation for the differences in response to 2,4-D.


Plant Disease ◽  
2020 ◽  
Author(s):  
Carlos Agustí-Brisach ◽  
José Pablo Jiménez-Urbano ◽  
Maria Carmen Raya-Ortega ◽  
Ana López-Moral ◽  
Antonio Trapero-Casas

Symptoms of branch dieback of olive with internal longitudinal dark streaking were observed during routine surveys in super high-density systems in southern Spain. Nineteen fungal isolates recovered from wood samples showing internal discoloration and necrotic xylem vessels were selected. Multilocus alignments of ITS, LSU, TUB and/or ACT were performed, and the following species were identified: Acremonium sclerotigenum, Cadophora luteo-olivacea, Paracremonium sp., Phaeoacremonium italicum, Ph. minimum, Ph. scolyti and Pseudophaeomoniella oleicola. Colony color, mycelial growth, conidial characteristics and production were defined on PDA, MEA and OA. Phenotypic characteristics and conidial production varied depending on the isolate and culture media. The effect of temperature on mycelial growth was evaluated on MEA. The isolates showed slowly mycelial growth (0.5-2.0 mm day-1), with the optimum temperature ranging from 23.2 to 33.9 °C. Pathogenicity tests were conducted on nine-month-old olive potted plants (‘Arbequina’) inoculated with mycelial plugs. Cadophora luteo-olivacea, Pm. minimum and Phaeomoniella chlamydospora isolates from grapevine were included in the pathogenicity tests for comparative purposes. Prior to inoculation, the effect on the infection by inoculating with conidial suspensions or mycelial plugs was evaluated, with the second method being the most effective. Cadophora luteo-olivacea was the most aggressive fungi to olive followed by Pm. minimum.


Sign in / Sign up

Export Citation Format

Share Document