scholarly journals Carbon and Nitrogen Mineralization in Soil Combining Sewage Sludge and Straw

2015 ◽  
Vol 39 (5) ◽  
pp. 1428-1435 ◽  
Author(s):  
Sandro José Giacomini ◽  
Vera Lúcia Guedes Simon ◽  
Celso Aita ◽  
Leonardo Mendes Bastos ◽  
Douglas Adams Weiler ◽  
...  

ABSTRACT The combined incorporation of sewage sludge (SS) and oat straw (OS) to the soil can increase straw carbon mineralization and microbial nitrogen immobilization. This hypothesis was tested in two laboratory experiments, in which SS was incorporated in the soil with and without OS. One treatment in which only straw was incorporated and a control with only soil were also evaluated. The release of CO2 and mineral N in the soil after organic material incorporation was evaluated for 110 days. The cumulative C mineralization reached 30.1 % for SS and 54.7 % for OS. When these organic materials were incorporated together in the soil, straw C mineralization was not altered. About 60 % of organic N in the SS was mineralized after 110 days. This N mineralization index was twice as high as that defined by Resolution 375/2006 of the National Environmental Council. The combined incorporation of SS and OS in the soil caused an immobilization of microbial N of 5.9 kg Mg-1 of OS (mean 3.5 kg Mg-1). The results of this study indicated that SS did not increase straw C mineralization, but the SS rate should be adjusted to compensate for the microbial N immobilization caused by straw.

HortScience ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 209-212 ◽  
Author(s):  
T.K. Hartz ◽  
J.P. Mitchell ◽  
C. Giannini

Nitrogen and carbon mineralization rates of 19 manure and compost samples were determined in 1996, with an additional 12 samples evaluated in 1997. These organic amendments were mixed with a soil: sand blend at 2% by dry weight and the amended blends were incubated at constant moisture for 12 (1996) or 24 weeks (1997) at 25 °C. Net N mineralization was measured at 4- (1996) or 8-week (1997) intervals, C mineralization at 4-week intervals in 1997. Pots of the amended blends were also seeded with fescue (Festuca arundinacea Shreb.) and watered, but not fertilized, for 17 (1996) or 18 weeks (1997); N phytoavailability was estimated from fescue biomass N and mineral N in pot leachate. An average of 16%, 7%, and 1% of organic N was mineralized in 12 weeks of incubation in 1996, and an average of 15%, 6%, and 2% in 24 weeks of incubation in 1997, in manure, manure compost, and plant residue compost, respectively. Overall, N recovery in the fescue assay averaged 11%, 6%, and 2% of total amendment N for manure, manure compost, and plant residue compost, respectively. Mineralization of manure C averaged 35% of initial C content in 24 weeks, while compost C mineralization averaged only 14%. Within 4 (compost) or 16 weeks (manure), the rate of mineralization of amendment C had declined to a level similar to that of the soil organic C.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Edilson Marcelino Silva ◽  
Thais Destefani Ribeiro ◽  
Jaqueline Gonçalves Fernandes ◽  
Joel Augusto Muniz

Agricultural management is a viable way for recycling animal residues in feedlots. Thesubstances that make up organic residues change the dynamics of the organic matter decompositionin the soil. Information on carbon mineralization curves allows seeking improvements in soil qualityand, consequently, in crop productivity. The Stanford & Smith Nonlinear Model is the most usedto describe C mineralization of organic residues in the soil. This model considers organic residuesare composed of substances that are mineralized exponentially. The Cabrera Model considers twofractions, one composed of substances that are mineralized exponentially and other composed ofmore resistant substances with constant mineralization. The objective of this work was to comparenonlinear models that describe carbon mineralization, considering residues on surface or incorporatedinto the soil. The data evaluated were from an experiment with oat straw, liquid swine manure, andswine litter bedding. The Stanford & Smith and Cabrera Models were used considering structure offirst order autoregressive errors - AR(1), when necessary. The fittings were compared using the AkaikeInformation Criterion (AIC). The Cabrera Model was more adequate to describe C mineralization infour treatments (soil + incorporated liquid swine manure; soil + oat straw on surface + liquid swinemanure on surface; soil + incorporated straw; and soil + straw on surface). The Stanford & SmithModel was better in three treatments (soil + incorporated straw + incorporated liquid swine manure;swine litter bedding on surface; and incorporated swine litter bedding). None of the models describedthe treatment soil + liquid swine manure on surface.Keywords: Decomposition. Half-life. Stanford & Smith Model. Cabrera Model.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Edilson Marcelino Silva ◽  
Silvio De Castro Silveira ◽  
Thais Destefani Ribeiro Furtado ◽  
Joel Augusto Muniz

An economic and environmentally feasible way to recycle sewage sludge is its use in agriculture.Information on carbon mineralization curves allows us to seek improvements in soil quality andcrop productivity. The objective of this work was to evaluate the nonlinear models that describecarbon mineralization in the soil. The experiment was conducted in laboratory and the design wascompletely randomized, with four replicates and three treatments. The following treatments wereevaluated: sewage sludge, black oat straw and sewage sludge + oat straw, incorporated into the soil.Pots with soil and the applied treatment were incubated for 110 days. The Stanford and Smith andCabrera models were used, considering structure of autoregressive errors AR (1) when necessary.The fittings were compared using the Akaike Information Criterion (AIC). The evaluated nonlinearmodels described the carbon decomposition dynamics of the treatments satisfactorily. The Stanfordand Smith model is suitable for describing the carbon decomposition in the soil + sludge and soil +oat straw treatments. The Cabrera model is suitable to describe the carbon decomposition of the soil+ sludge + straw treatment.Keywords: Mineralization. Stanford and Smith model. Cabrera model. Half-life.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


1994 ◽  
Vol 74 (1) ◽  
pp. 99-107 ◽  
Author(s):  
D. C. Jans-Hammermeister ◽  
W. B. McGill ◽  
T. L. Jensen

The distribution and dynamics of 15N following green manuring of 15N-labelled 10% bloom and full bloom field pea (Pisum sativum ’Sirius’) were investigated in the soil mineral N, microbial N and non-microbial organic N (NMO-N) fractions and in a subsequent barley crop at two contrasting field sites in central Alberta: one on a Chernozemic (Dark Brown) soil near Provost and the other on a Luvisolic (Gray Luvisol) soil near Rimbey. Soils and plants were sampled four times during a 1-yr period. The 10% bloom and full bloom pea shoots were similar in dry matter production and N and C content. More N was, however, released from the younger pea residues directly following soil incorporation, which we attributed to a larger proportion of labile components. Barley yield, N content and 15N recovery in the grain were not influenced by legume bloom stage at incorporation, although significantly more 15N was recovered in the barley straw and roots of the full bloom treatment. Incorporation of full bloom legumes resulted in closer synchrony between the appearance of legume-derived mineral 15N and early N demand by the barley crop. The decay rate constants for the recalcitrant fraction of the legume residues were not significantly influenced by bloom stage or site over the time intervals of our observations and are, thus, consistent with the theory that decomposition of the recalcitrant fraction of plant residues can be described by a single exponential equation. Key words:15N, legume green manuring, Pisum sativum, decomposition


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 519 ◽  
Author(s):  
J. Sierra ◽  
S. Fontaine ◽  
L. Desfontaines

Laboratory incubations and a field experiment were carried out to determine the factors controlling N mineralization and nitrification, and to estimate the N losses (leaching and volatilization) in a sewage-sludge-amended Oxisol. Aerobically digested sludge was applied at a rate equivalent to 625 kg N/ha. The incubations were conducted as a factorial experiment of temperature (20˚C, 30˚C, and 40˚C) soil water (–30 kPa and –1500 kPa) sludge type [fresh (FS) water content 6230 g/kg; dry (DS) water content 50 g/kg]. The amount of nitrifiers was determined at the beginning and at the end of the experiment. The incubation lasted 24 weeks. The field study was conducted using bare microplots (4 m) and consisted of a factorial experiment of sludge type (FS and DS) sludge placement (subsurface, I+; surface, I–). Ammonia volatilization and the profile (0–0.90 m) of mineral N concentration were measured during 6 and 29 weeks after sludge application, respectively. After 24 weeks of incubation at 40˚C and –30 kPa, net N mineralization represented 52% (FS) and 71% (DS) of the applied N. The difference between sludges was due to an initial period of N immobilization in FS. Nitrification was more sensitive than N mineralization to changes in water potential and it was fully inhibited at –1500 kPa. The introduction of a large amount of nitrifiers with FS did not modify the rate of nitrification, which was principally limited by soil acidity (pH 4.9). Although N mineralization was greatest at 30˚C, nitrification increased continuously with temperature. Nitrogen mineralization from DS was well described by the double-exponential equation. For FS, the equation was modified to take into account an immobilization-remineralization period. Sludge placement significantly affected the soil NO-3/NH+4 ratio in the field: 16 for I+ and 1.5 for I–, after 11 weeks. In the I– treatment, nitrification of the released NH+4 was limited by soil moisture because of the dry soil mulch formed a few hours after rain. At the end of the field experiment, the estimated losses of N by leaching were 432 kg N/ha for I+ and 356 kg N/ha for I–. Volatilization was not detectable in the I+ microplots and it represented only 0.5% of the applied N in the I– microplots. The results showed that placement of sludge may be a valuable tool to decrease NO-3 leaching by placing the sludge under unfavourable conditions for nitrification.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2249
Author(s):  
Nikolett Uzinger ◽  
Orsolya Szécsy ◽  
Nóra Szűcs-Vásárhelyi ◽  
István Padra ◽  
Dániel Benjámin Sándor ◽  
...  

Organic waste and the compost and vermicompost derived from it may have different agronomic values, but little work is available on this aspect of sewage sludge. A 75-day pot experiment with perennial ryegrass (Lolium perenne) as the test plant aimed to investigate the fertiliser value and organic matter replenishment capacity of digested sewage sludge (DS) and the compost (COM) and vermicompost (VC) made from it, applied in 1% and 3% doses on acidic sand and calcareous loam. The NPK content and availability, changes in organic carbon content and plant biomass, and the efficiency of the amendments as nitrogen fertilisers were investigated. The final average residual carbon content for DS, COM, and VC was 35 ± 34, 85 ± 46, and 55 ± 46%, respectively. The organic carbon mineralisation rate depended on the soil type. The additives induced significant N mineralisation in both soils: the average increment in mineral N content was 1.7 times the total added N on acidic sand and 4.2 times it on calcareous loam for the 1% dose. The agronomic efficiency of COM and VC as fertilisers was lower than that of DS. In the short term, DS proved to be the best fertiliser, while COM was the best for organic matter replenishment.


Author(s):  
Syed Azam Shah ◽  
Wisal Mohammad ◽  
Haroon Haroon ◽  
Adnan Anwar Khan

The study was designed to asses the residual effect of organic N (Poultry Manure) and mineral N on maize crop in field experiments carried out on silty clay loam soil at NIFA, Tarnab, Peshawar, Khyber Pakhtunkhwa (KP) Pakistan during 2014-15. Combined dose of N from both sources were 120 kg ha-1 applied to wheat crop alone and in different combination making six treatments. Maize variety (Azam) was sown in Randomized complete block (RCB) design with four replications. Agronomic data, grains ear-1, 1000 grain weight, biomass grain yield data, N-uptake in maize grain and straw were recorded. Results showed that maximum grain ear−1, 1000 grain weight, biomass and grain yield was obtained from treatment where 25% N applied from poultry manure + 75% from mineral N source applied to previous wheat crop. Agronomic efficiency and nitrogen use efficiency were also found maximum in treatment where 75% poultry manure + 25% mineral N was applied. It was concluded from the study that residual effect of organic manure with mineral N in different ratios enhances crop productivity and soil fertility.


Sign in / Sign up

Export Citation Format

Share Document