scholarly journals Modeling of atmospheric dispersion with dry deposition: an application on a research reactor

2014 ◽  
Vol 29 (3) ◽  
pp. 331-337 ◽  
Author(s):  
Khaled S. M. Essa ◽  
Soad M. Etman ◽  
Maha S. El-Otaify

An analytical solution of the three dimensional advection-diffusion equations has been formulated to simulate the dispersion of pollutants in the planetary boundary layer. The solution is based on the assumption that the concentration distribution of pollutants in the crosswind direction has a Gaussian shape and the wind speed is constant. The analytical solution has been obtained in two cases where, the vertical eddy diffusivity is taken to be dependent on: (a) the downwind distance x only and (b) the vertical height z only. The dry deposition of the diffusing particles on the ground is taken into account throughout the boundary conditions. The resulting analytical formulae have been applied to calculate the concentration of I-131 using data collected from the experiments conducted to collect air samples around the Research Reactor. Statistical measures are utilized in the comparison between the predicted and observed concentrations. The results are discussed and presented in tables and illustrative figures.

2019 ◽  
Vol 396 ◽  
pp. 91-98 ◽  
Author(s):  
Régis S. Quadros ◽  
Glênio A. Gonçalves ◽  
Daniela Buske ◽  
Guilherme J. Weymar

This work presents an analytical solution for the transient three-dimensional advection-diffusion equation to simulate the dispersion of pollutants in the atmosphere. The solution of the advection-diffusion equation is obtained analytically using a combination of the methods of separation of variables and GILTT. The main advantage is that the presented solution avoids a numerical inversion carried out in previous works of the literature, being by this way a totally analytical solution, less than a summation truncation. Initial numerical simulations and statistical comparisons using data from the Copenhagen experiment are presented and prove the good performance of the model.


Nukleonika ◽  
2020 ◽  
Vol 65 (3) ◽  
pp. 173-179
Author(s):  
Maciej Lipka

AbstractSource term is the amount of radionuclide activity, measured in becquerels, released to the atmosphere from a nuclear reactor, together with the plume composition, over a specific period. It is the basis of radioprotection-related calculation. Usually, such computations are done using commercial codes; however, they are challenging to be used in the case of the MARIA reactor due to its unique construction. Consequently, there is a need to develop a method that will be able to deliver useful results despite the complicated geometry of the reactor site. Such an approach, based upon the Bateman balance equation, is presented in the article, together with the results of source term calculation for the MARIA reactor. Additionally, atmospheric dispersion of the radionuclides, analysed with the Gauss plume model with dry deposition, is presented.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


2007 ◽  
Vol 44 (3) ◽  
pp. 278-285 ◽  
Author(s):  
Virgilio F. Ferrario ◽  
Fabrizio Mian ◽  
Redento Peretta ◽  
Riccardo Rosati ◽  
Chiarella Sforza

Objective: To compare three-dimensional nasal measurements directly made on subjects to those made on plaster casts, and nasal dimensions obtained with a surface-based approach to values obtained with a landmark representation. Methods: Soft-tissue nasal landmarks were directly digitized on 20 healthy adults. Stone casts of their noses were digitized and mathematically reconstructed using nonuniform rational B-splines (NURBS) curves. Linear distances, angles, volumes and surface areas were computed using facial landmarks and NURBS-reconstructed models (surface-based approach). Results: Measurements on the stone casts were somewhat smaller than values obtained directly from subjects (differences between −0.05 and −1.58 mm). Dahlberg's statistic ranged between 0.73 and 1.47 mm. Significant (p < .05) t values were found for 4 of 15 measurements. The surface-based approach gave values 3.5 (volumes) and 2.1 (surface area) times larger than those computed with the landmark-based method. The two values were significantly related (volume, r = 0.881; surface, r = 0.924; p < .001), the resulting equations estimated actual values well (mean difference, volume −0.01 mm3, SD 1.47, area 0.05 cm2, SD 1.44); limits of agreement between −2.89 and 2.87 mm3 (volume); −2.88 and 2.78 cm2 (area). Conclusions: Considering the characteristics of the two methods, and for practical purposes, nasal distances and angles obtained on plaster models were comparable to digital data obtained directly from subjects. Surface areas and volumes were best obtained using a surface-based approach, but could be estimated using data provided by the landmark representation.


2012 ◽  
Vol 42 (1) ◽  
pp. 18-38 ◽  
Author(s):  
G. Roullet ◽  
J. C. McWilliams ◽  
X. Capet ◽  
M. J. Molemaker

Abstract High-resolution simulations of β-channel, zonal-jet, baroclinic turbulence with a three-dimensional quasigeostrophic (QG) model including surface potential vorticity (PV) are analyzed with emphasis on the competing role of interior and surface PV (associated with isopycnal outcropping). Two distinct regimes are considered: a Phillips case, where the PV gradient changes sign twice in the interior, and a Charney case, where the PV gradient changes sign in the interior and at the surface. The Phillips case is typical of the simplified turbulence test beds that have been widely used to investigate the effect of ocean eddies on ocean tracer distribution and fluxes. The Charney case shares many similarities with recent high-resolution primitive equation simulations. The main difference between the two regimes is indeed an energization of submesoscale turbulence near the surface. The energy cycle is analyzed in the (k, z) plane, where k is the horizontal wavenumber. In the two regimes, the large-scale buoyancy forcing is the primary source of mechanical energy. It sustains an energy cycle in which baroclinic instability converts more available potential energy (APE) to kinetic energy (KE) than the APE directly injected by the forcing. This is due to a conversion of KE to APE at the scale of arrest. All the KE is dissipated at the bottom at large scales, in the limit of infinite resolution and despite the submesoscales energizing in the Charney case. The eddy PV flux is largest at the scale of arrest in both cases. The eddy diffusivity is very smooth but highly nonuniform. The eddy-induced circulation acts to flatten the mean isopycnals in both cases.


Sign in / Sign up

Export Citation Format

Share Document