scholarly journals Properties of Steady Geostrophic Turbulence with Isopycnal Outcropping

2012 ◽  
Vol 42 (1) ◽  
pp. 18-38 ◽  
Author(s):  
G. Roullet ◽  
J. C. McWilliams ◽  
X. Capet ◽  
M. J. Molemaker

Abstract High-resolution simulations of β-channel, zonal-jet, baroclinic turbulence with a three-dimensional quasigeostrophic (QG) model including surface potential vorticity (PV) are analyzed with emphasis on the competing role of interior and surface PV (associated with isopycnal outcropping). Two distinct regimes are considered: a Phillips case, where the PV gradient changes sign twice in the interior, and a Charney case, where the PV gradient changes sign in the interior and at the surface. The Phillips case is typical of the simplified turbulence test beds that have been widely used to investigate the effect of ocean eddies on ocean tracer distribution and fluxes. The Charney case shares many similarities with recent high-resolution primitive equation simulations. The main difference between the two regimes is indeed an energization of submesoscale turbulence near the surface. The energy cycle is analyzed in the (k, z) plane, where k is the horizontal wavenumber. In the two regimes, the large-scale buoyancy forcing is the primary source of mechanical energy. It sustains an energy cycle in which baroclinic instability converts more available potential energy (APE) to kinetic energy (KE) than the APE directly injected by the forcing. This is due to a conversion of KE to APE at the scale of arrest. All the KE is dissipated at the bottom at large scales, in the limit of infinite resolution and despite the submesoscales energizing in the Charney case. The eddy PV flux is largest at the scale of arrest in both cases. The eddy diffusivity is very smooth but highly nonuniform. The eddy-induced circulation acts to flatten the mean isopycnals in both cases.

1991 ◽  
Vol 148 ◽  
pp. 431-431
Author(s):  
Max Pettini

The exceptional brightness of SN1987A provided a wealth of opportunities for probing not only the interstellar medium in our Galaxy and in the Large Magellanic Cloud (LMC), but also any intergalactic matter between the two. Spectroscopic work has been directed both towards searches for very weak absorption lines, which require data of exceptionally high signal-to-noise ratio, and towards recording spectra of known features at unprecedentedly high resolution. Both approaches have yielded exciting and unexpected results. The first detection of [FeX] absorption has revealed the presence of million-degree gas in the interstellar medium of the LMC, possibly resulting from the explosions of previous supernovae in the 30-Doradus HII region. The ultra-high-resolution observations have been successful in resolving the hyperfine structure of the sodium D lines in several interstellar clouds along the line of sight to the supernova. This implies that the clouds are at temperatures of, at most, 170 K and have internal turbulent velocities of not more than 0.2 km s−1; large-scale motions thus appear to be mainly subsonic in these clouds. Radio observations of HI emission at 21-cm with the Parkes telescope have been combined with measurements of a variety of ultraviolet absorption lines, obtained with the International Ultraviolet Explorer satellite, to give the most detailed picture yet of the chemical composition of the gas between the Galaxy and the LMC. Finally, photographic monitoring of the light echo of SN 1987A over the last two years has provided a three-dimensional view of the interstellar environment in which SN 1987A exploded, complementing vividly the information deduced from the spectroscopic results.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8190
Author(s):  
Pauli Putkiranta ◽  
Matti Kurkela ◽  
Matias Ingman ◽  
Aino Keitaanniemi ◽  
Aimad El Issaoui ◽  
...  

The deterioration of road conditions and increasing repair deficits pose challenges for the maintenance of reliable road infrastructure, and thus threaten, for example, safety and the fluent flow of traffic. Improved and more efficient procedures for maintenance are required, and these require improved knowledge of road conditions, i.e., improved data. Three-dimensional mapping presents possibilities for large-scale collection of data on road surfaces and automatic evaluation of maintenance needs. However, the development and, specifically, evaluation of large-scale mobile methods requires reliable references. To evaluate possibilities for close-range, static, high-resolution, three-dimensional measurement of road surfaces for reference use, three measurement methods and five instrumentations are investigated: terrestrial laser scanning (TLS, Leica RTC360), photogrammetry using high-resolution professional-grade cameras (Nikon D800 and D810E), photogrammetry using an industrial camera (FLIR Grasshopper GS3-U3-120S6C-C), and structured-light handheld scanners Artec Leo and Faro Freestyle. High-resolution photogrammetry is established as reference based on laboratory measurements and point density. The instrumentations are compared against one another using cross-sections, point–point distances, and ability to obtain key metrics of defects, and a qualitative assessment of the processing procedures for each is carried out. It is found that photogrammetric models provide the highest resolutions (10–50 million points per m2) and photogrammetric and TLS approaches perform robustly in precision with consistent sub-millimeter offsets relative to one another, while handheld scanners perform relatively inconsistently. A discussion on the practical implications of using each of the examined instrumentations is presented.


2016 ◽  
Vol 2 ◽  
pp. e88 ◽  
Author(s):  
Dany Vohl ◽  
David G. Barnes ◽  
Christopher J. Fluke ◽  
Govinda Poudel ◽  
Nellie Georgiou-Karistianis ◽  
...  

We presentencube—a qualitative, quantitative and comparative visualisation and analysis system, with application to high-resolution, immersive three-dimensional environments and desktop displays.encubeextends previous comparative visualisation systems by considering: (1) the integration of comparative visualisation and analysis into a unified system; (2) the documentation of the discovery process; and (3) an approach that enables scientists to continue the research process once back at their desktop. Our solution enables tablets, smartphones or laptops to be used as interaction units for manipulating, organising, and querying data. We highlight the modularity ofencube, allowing additional functionalities to be included as required. Additionally, our approach supports a high level of collaboration within the physical environment. We show how our implementation ofencubeoperates in a large-scale, hybrid visualisation and supercomputing environment using the CAVE2 at Monash University, and on a local desktop, making it a versatile solution. We discuss how our approach can help accelerate the discovery rate in a variety of research scenarios.


Author(s):  
Z. G. Li ◽  
L. Liang ◽  
P.J. Fagan ◽  
M. van Kavelaar

Following the discovery of a large scale synthesis of fullerenes, the existence of the related carbon nanotubes was suggested by high resolution electron microscopy (HREM). Larger scale syntheses of these nanotube-rich materials has now been reported and has sparked interest worldwide. Because the HREM technique essentially observes the projection of a three dimensional object onto a two-dimensional plane, the three dimensional shape of the object is usually not apparent in typical HREM images. However, as we report here, by rotating along the axis of single carbon nanotube, and recording the images in succession by HREM, the non-cylindrical nature of these tubes is revealed, especially near the sealed ends of the nanotubes. In addition, from electon diffraction and X-ray diffraction, we find the spacing between the planes to be 3.398(8) Å on average. This is in contrast to earlier reports which suggested an interlayer distance of 3.35 Å, similar to the graphite interplanar spacing.


2012 ◽  
Vol 9 (77) ◽  
pp. 3351-3358 ◽  
Author(s):  
Silvia De Monte ◽  
Cedric Cotté ◽  
Francesco d'Ovidio ◽  
Marina Lévy ◽  
Matthieu Le Corre ◽  
...  

Marine top predators such as seabirds are useful indicators of the integrated response of the marine ecosystem to environmental variability at different scales. Large-scale physical gradients constrain seabird habitat. Birds however respond behaviourally to physical heterogeneity at much smaller scales. Here, we use, for the first time, three-dimensional GPS tracking of a seabird, the great frigatebird ( Fregata minor ), in the Mozambique Channel. These data, which provide at the same time high-resolution vertical and horizontal positions, allow us to relate the behaviour of frigatebirds to the physical environment at the (sub-)mesoscale (10–100 km, days–weeks). Behavioural patterns are classified based on the birds’ vertical displacement (e.g. fast/slow ascents and descents), and are overlaid on maps of physical properties of the ocean–atmosphere interface, obtained by a nonlinear analysis of multi-satellite data. We find that frigatebirds modify their behaviours concurrently to transport and thermal fronts. Our results suggest that the birds’ co-occurrence with these structures is a consequence of their search not only for food (preferentially searched over thermal fronts) but also for upward vertical wind. This is also supported by their relationship with mesoscale patterns of wind divergence. Our multi-disciplinary method can be applied to forthcoming high-resolution animal tracking data, and aims to provide a mechanistic understanding of animals' habitat choice and of marine ecosystem responses to environmental change.


Author(s):  
James A. Klimchuk

We highlight 10 key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite build-up of stress. (6) Nanoflares repeat with different frequencies. (7) What is the characteristic magnitude of energy release? (8) What causes the collective behaviour responsible for loops? (9) What are the onset conditions for energy release? (10) Chromospheric nanoflares are not a primary source of coronal plasma. Significant progress in solving the coronal heating problem will require coordination of approaches: observational studies, field-aligned hydrodynamic simulations, large-scale and localized three-dimensional magnetohydrodynamic simulations, and possibly also kinetic simulations. There is a unique value to each of these approaches, and the community must strive to coordinate better.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ebrahim Behroodi ◽  
Hamid Latifi ◽  
Zeinab Bagheri ◽  
Esra Ermis ◽  
Shabnam Roshani ◽  
...  

AbstractThe fabrication of a large-scale microfluidic mold with 3D microstructures for manufacturing of the conical microwell chip using a combined projection micro-stereolithography (PµSL) 3D printing/CNC micro-milling method for tumor spheroid formation is presented. The PµSL technique is known as the most promising method of manufacturing microfluidic chips due to the possibility of creating complex three-dimensional microstructures with high resolution in the range of several micrometers. The purpose of applying the proposed method is to investigate the influence of microwell depths on the formation of tumor spheroids. In the conventional methods, the construction of three-dimensional microstructures and multi-height chips is difficult, time-consuming, and is performed using a multi-step lithography process. Microwell depth is an essential parameter for microwell design since it directly affects the shear stress of the fluid flow and the diffusion of nutrients, respiratory gases, and growth factors. In this study, a chip was made with microwells of different depth varying from 100 to 500 µm. The mold of the microwell section is printed by the lab-made PµSL printer with 6 and 1 µm lateral and vertical resolutions. Other parts of the mold, such as the main chamber and micro-channels, were manufactured using the CNC micro-milling method. Finally, different parts of the master mold were assembled and used for PDMS casting. The proposed technique drastically simplifies the fabrication and rapid prototyping of large-scale microfluidic devices with high-resolution microstructures by combining 3D printing with the CNC micro-milling method.


2013 ◽  
Vol 12 (11) ◽  
pp. 1423-1432 ◽  
Author(s):  
Romain Gibeaux ◽  
Dominic Hoepfner ◽  
Ivan Schlatter ◽  
Claude Antony ◽  
Peter Philippsen

ABSTRACT Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii . Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.


Sign in / Sign up

Export Citation Format

Share Document