scholarly journals Application of Artificial Neural Networks (ANNs) in the Gap Filling of Meteorological Time Series

2018 ◽  
Vol 33 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Eluã Ramos Coutinho ◽  
Robson Mariano da Silva ◽  
Jonni Guiller Ferreira Madeira ◽  
Pollyanna Rodrigues de Oliveira dos Santos Coutinho ◽  
Ronney Arismel Mancebo Boloy ◽  
...  

Abstract This study estimates and fills real flaws in a series of meteorological data belonging to four regions of the state of Rio de Janeiro. For this, an Artificial Neural Network (ANN) of Multilayer Perceptron (MLP) was applied. In order to evaluate its adequacy, the monthly variables of maximum air temperature and relative humidity of the period between 05/31/2002 and 12/31/2014 were estimated and compared with the results obtained by Multiple Linear Regression (MLR) and Regions Average (RA), and still faced with the recorded data. To analyze the estimated values and define the best model for filling, statistical techniques were applied such as correlation coefficient (r), Mean Percentage Error (MPE) and others. The results showed a high relation with the recorded data, presenting indexes between 0.94 to 0.98 of (r) for maximum air temperature and between 2.32% to 1.05% of (MPE), maintaining the precision between 97% A 99%. For the relative air humidity, the index (r) with MLP remained between 0.77 and 0.94 and (MPE) between 2.41% and 1.85%, maintaining estimates between 97% and 98%. These results highlight MLP as being effective in estimating and filling missing values.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5188
Author(s):  
Mitsugu Hasegawa ◽  
Daiki Kurihara ◽  
Yasuhiro Egami ◽  
Hirotaka Sakaue ◽  
Aleksandar Jemcov

An artificial neural network (ANN) was constructed and trained for predicting pressure sensitivity using an experimental dataset consisting of luminophore content and paint thickness as chemical and physical inputs. A data augmentation technique was used to increase the number of data points based on the limited experimental observations. The prediction accuracy of the trained ANN was evaluated by using a metric, mean absolute percentage error. The ANN predicted pressure sensitivity to luminophore content and to paint thickness, within confidence intervals based on experimental errors. The present approach of applying ANN and the data augmentation has the potential to predict pressure-sensitive paint (PSP) characterizations that improve the performance of PSP for global surface pressure measurements.


2015 ◽  
Vol 95 (4) ◽  
pp. 67-76
Author(s):  
Stanimir Zivanovic ◽  
Milena Gocic ◽  
Radomir Ivanovic ◽  
Natasa Martic-Bursac

Fires in nature are caused by moisture content in the burning material, which is dependent on the values of the climatic elements. The occurrence of these fires in Serbia is becoming more common, depending on the intensity and duration have a major impact on the state of vegetation. The aim of this study was to determine the association between changes in air temperature and the dynamics of the appearance of forest fires. To study the association of these properties were used Pearson correlation coefficients. The analysis is based on meteorological data obtained from meteorological station in Negotin for the period 1991-2010. Research has found that the annual number of fires, correlating with an average annual air temperature (p = 0.317, ? = 0.21). Also, it was found that the annual number of fires positive, medium intensity, correlate with the absolute maximum air temperature (p = 0.578, ? = 0.26), but not statistically significant (p> 0.05).


2012 ◽  
pp. 1-16 ◽  
Author(s):  
Norhisham Bakhary ◽  
Khairulzan Yahya ◽  
Chin Nam Ng

Kebelakangan ini ramai penyelidik mendapati ‘Artificial Neural Network’ (ANN) untuk digunakan dalam berbagai bidang kejuruteraan awam. Banyak aplikasi ANN dalam proses peramalan menghasilkan kejayaan. Kajian ini memfokuskan kepada penggunaan siri masa ‘Univariate Neural Network’ untuk meramalkan permintaan rumah kos rendah di daerah Petaling Jaya, Selangor. Dalam kajian ini, beberapa kes bagi sesi latihan dan ramalan telah dibuat untuk mendapatkan model terbaik bagi meramalkan permintaan rumah. Nilai RMSE yang paling rendah yang diperolehi bagi tahap validasi adalah 0.560 dan nilai MAPE yang diperolehi adalah 8.880%. Hasil kajian ini menunjukkan kaedah ini memberikan keputusan yang boleh diterima dalam peramalan permintaan rumah berdasarkan data masa lalu. Kata kunci: Univariate Neural Network, permintaan rumah kos rendah, RMSE, MAPE Recently researchers have found the potential applications of Artificial Neural Network (ANN) in various fields in civil engineering. Many attempts to apply ANN as a forecasting tool has been successful. This paper highlighted the application of Time Series Univariate Neural Network in forecasting the demand of low cost house in Petaling Jaya district, Selangor, using historical data ranging from February 1996 to Appril 2000. Several cases of training and testing were conducted to obtain the best neural network model. The lowest Root Mean Square Error (RMSE) obtained for validation step is 0.560 and Mean Absolute Percentage Error (MAPE) is 8.880%. These results show that ANN is able to provide reliable result in term of forecasting the housing demand based on previous housing demand record. Key words: Time Series Univariate Neural Network, low cost housing demand, RMSE, MAPE


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Tamer Khatib ◽  
Azah Mohamed ◽  
K. Sopian ◽  
M. Mahmoud

This paper presents an assessment for the artificial neural network (ANN) based approach for hourly solar radiation prediction. The Four ANNs topologies were used including a generalized (GRNN), a feed-forward backpropagation (FFNN), a cascade-forward backpropagation (CFNN), and an Elman backpropagation (ELMNN). The three statistical values used to evaluate the efficacy of the neural networks were mean absolute percentage error (MAPE), mean bias error (MBE) and root mean square error (RMSE). Prediction results show that the GRNN exceeds the other proposed methods. The average values of the MAPE, MBE and RMSE using GRNN were 4.9%, 0.29% and 5.75%, respectively. FFNN and CFNN efficacies were acceptable in general, but their predictive value was degraded in poor solar radiation conditions. The average values of the MAPE, MBE and RMSE using the FFNN were 23%, −.09% and 21.9%, respectively, while the average values of the MAPE, MBE and RMSE using CFNN were 22.5%, −19.15% and 21.9%, respectively. ELMNN fared the worst among the proposed methods in predicting hourly solar radiation with average MABE, MBE and RMSE values of 34.5%, −11.1% and 34.35%. The use of the GRNN to predict solar radiation in all climate conditions yielded results that were highly accurate and efficient.


2021 ◽  
pp. 1-47
Author(s):  
Guoqiang Tang ◽  
Martyn P. Clark ◽  
Simon Michael Papalexiou

AbstractMeteorological data from ground stations suffer from temporal discontinuities caused by missing values and short measurement periods. Gap filling and reconstruction techniques have proven to be effective in producing serially complete station datasets (SCDs) that are used for a myriad of meteorological applications (e.g., developing gridded meteorological datasets and validating models). To our knowledge, all SCDs are developed at regional scales. In this study, we developed the serially complete Earth (SC-Earth) dataset, which provides daily precipitation, mean temperature, temperature range, dew-point temperature, and wind speed data from 1950 to 2019. SC-Earth utilizes raw station data from the Global Historical Climatology Network-Daily (GHCN-D) and the Global Surface Summary of the Day (GSOD). A unified station repository is generated based on GHCN-D and GSOD after station merging and strict quality control. ERA5 is optimally matched with station data considering the time shift issue and then used to assist the global gap filling. SC-Earth is generated by merging estimates from 15 strategies based on quantile mapping, spatial interpolation, machine learning, and multi-strategy merging. The final estimates are bias corrected using a combination of quantile mapping and quantile delta mapping. Comprehensive validation demonstrates that SC-Earth has high accuracy around the globe, with degraded quality in the tropics and oceanic islands due to sparse station networks, strong spatial precipitation gradients, and degraded ERA5 estimates. Meanwhile, SC-Earth inherits potential limitations such as inhomogeneity and precipitation undercatch from raw station data, which may affect its application in some cases. Overall, the high-quality and high-density SC-Earth dataset will benefit research in fields of hydrology, ecology, meteorology, and climate.


2021 ◽  
Vol 94 (2) ◽  
pp. 283-299
Author(s):  
Agnieszka Mąkosza

Climate change is an empirical fact evidenced by subsequent IPCC reports. The observed climate change is also manifested in the altered date of occurrence and duration of the seasons in a year. Variability of thermal conditions due to climate warming will have its toll on the bioclimatic conditions. The assessment of bioclimatic conditions was conducted with the use of Universal Thermal Climate Index (UTCI). The present elaboration is based on hourly values of the following meteorological elements: air temperature, relative air humidity, wind speed and cloud cover. The meteorological data were obtained from the Institute of Meteorology and Water Management – National Research Institute (IMGW-PIB) in Szczecin and cover the period 2000-2019. Variability of bioclimatic conditions is considered per periods corresponding to thermal seasons of the year as identified by the Gumiński (1948) method on the basis of monthly air temperature values. The analysed UTCI values with respect to thermal seasons indicate that mean UTCI values in the period 2000-2019 representative for thermal summer amount to 22.6°C, thermal spring 9,9°C, thermal autumn 8.4°C, thermal winter -10.4°C, early spring -4.6°C, and early winter -7.9°C. For the periods with identified lack of thermal winter, mean UTCI value was -6.6°C. The aim of the present paper is an attempt to assess the variability of biothermal conditions as calculated using the UTCI index against the thermal seasons of the year in Szczecin.


2013 ◽  
Vol 12 (4) ◽  
pp. 384-389

An artificial neural network (ANN) model-based approach was developed and applied to estimate values of air temperature and relative humidity in remote mountainous areas. The application site was the mountainous area of the Samaria National Forest canyon (Greece). Seven meteorological stations were established in the area and ANNs were developed to predict air temperature and relative humidity for the five most remote stations of the area using data only from two stations located in the two more easily accessed sites. Measured and model-estimated data were compared in terms of the determination coefficient (R2), the mean absolute error (MAE) and residuals normality. Results showed that R2 values range from 0.7 to 0.9 for air temperature and from 0.7 to 0.8 for relative humidity whereas MAE values range from 0.9 to 1.8 oC and 5 to 9%, for air temperature and relative humidity, respectively. In conclusion, the study demonstrated that ANNs, when adequately trained, could have a high applicability in estimating meteorological data values in remote mountainous areas with sparse network of meteorological stations, based on a series of relatively limited number of data values from nearby and easily accessed meteorological stations.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6919 ◽  
Author(s):  
Ying-Long Bai ◽  
De-Sheng Huang ◽  
Jing Liu ◽  
De-Qiang Li ◽  
Peng Guan

Background This study aims to describe the epidemiological patterns of influenza-like illness (ILI) in Huludao, China and seek scientific evidence on the link of ILI activity with weather factors. Methods Surveillance data of ILI cases between January 2012 and December 2015 was collected in Huludao Central Hospital, meteorological data was obtained from the China Meteorological Data Service Center. Generalized additive model (GAM) was used to seek the relationship between the number of ILI cases and the meteorological factors. Multiple Smoothing parameter estimation was made on the basis of Poisson distribution, where the number of weekly ILI cases was treated as response, and the smoothness of weather was treated as covariates. Lag time was determined by the smallest Akaike information criterion (AIC). Smoothing coefficients were estimated for the prediction of the number of ILI cases. Results A total of 29, 622 ILI cases were observed during the study period, with children ILI cases constituted 86.77%. The association between ILI activity and meteorological factors varied across different lag periods. The lag time for average air temperature, maximum air temperature, minimum air temperature, vapor pressure and relative humidity were 2, 2, 1, 1 and 0 weeks, respectively. Average air temperature, maximum air temperature, minimum air temperature, vapor pressure and relative humidity could explain 16.5%, 9.5%, 18.0%, 15.9% and 7.7% of the deviance, respectively. Among the temperature indexes, the minimum temperature played the most important role. The number of ILI cases peaked when minimum temperature was around −13 °C in winter and 18 °C in summer. The number of cases peaked when the relative humidity was equal to 43% and then began to decrease with the increase of relative humidity. When the humidity exceeded 76%, the number of ILI cases began to rise. Conclusions The present study first analyzed the relationship between meteorological factors and ILI cases with special consideration of the length of lag period in Huludao, China. Low air temperature and low relative humidity (cold and dry weather condition) played a considerable role in the epidemic pattern of ILI cases. The trend of ILI activity could be possibly predicted by the variation of meteorological factors.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Şükrü Özşahin ◽  
Hilal Singer

In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for the wood industry to predict the gloss with less number of tiring experimental activities.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4172 ◽  
Author(s):  
Karel Dejmal ◽  
Petr Kolar ◽  
Josef Novotny ◽  
Alena Roubalova

An increasing number of individuals and institutions own or operate meteorological stations, but the resulting data are not yet commonly used in the Czech Republic. One of the main difficulties is the heterogeneity of measuring systems that puts in question the quality of outcoming data. Only after a thorough quality control of recorded data is it possible to proceed with for example a specific survey of variability of a chosen meteorological parameter in an urban or suburban region. The most commonly researched element in the given environment is air temperature. In the first phase, this paper focuses on the quality of data provided by amateur and institutional stations. The following analyses consequently work with already amended time series. Due to the nature of analyzed data and their potential use in the future it is opportune to assess the appropriateness of chronological and possibly spatial interpolation of missing values. The evaluation of seasonal variability of air temperature in the scale of Brno city and surrounding area in 2015–2017 demonstrates, that the enrichment of network of standard (professional) stations with new stations may significantly refine or even revise the current state of knowledge, for example in the case of urban heat island phenomena. A cluster analysis was applied in order to assess the impact of localization circumstances (station environment, exposition, etc.) as well as typological classification of the set of meteorological stations.


Sign in / Sign up

Export Citation Format

Share Document