scholarly journals Influence of the Resin Cement Thickness on the Push-Out Bond Strength of Glass Fiber Posts

2016 ◽  
Vol 27 (5) ◽  
pp. 592-598 ◽  
Author(s):  
Regina Maria Helen-Cot Marcos ◽  
◽  
Gustavo Ross Kinder ◽  
Edson Alfredo ◽  
Tarcisio Quaranta ◽  
...  

Abstract The objective of the present study was to evaluate the influence of resin cement thickness on the bond strength of prefabricated and customized glass fiber posts after storage in distilled water. Thirty human uniradicular roots were treated endodontically. The roots were divided into 3 groups: THIN (thin cement layer) - post space preparation with #0.5 drill and cementation of #0.5 post; THICK (thick cement layer) - post space preparation with #1 drill and cementation of #0.5 post; and CUSTOM (customized cement layer) - post space preparation with #1 drill and cementation of a customized post (#0.5 glass fiber posts customized with resin composite). All posts were luted with self-adhesive resin cement. The push-out test was carried out after storage for 24 h and 90 days in distilled water at 37 °C. The data were analyzed with three-way ANOVA and Tukey's test (a=0.05). Bond strengths were significantly higher for CUSTOM (9.37 MPa), than for THIN (7.85 MPa) and THICK (7.07 MPa), which were statistically similar. Considering the thirds, the bond strength varied in the sequence: apical (7.13 MPa) < middle (8.22 MPa) = coronal (8.94 MPa). Bond strength for 24 h storage was significantly higher (8.80 MPa) than for 90-day storage (7.40 MPa). It may be concluded that the thickness of resin cement influenced the bond strength of glass fiber posts. The customized posts presented higher bond strength. Storage in water for 90 days affected negatively the values of bond strength, especially for thick cement layers in the apical third.

2016 ◽  
Vol 45 (4) ◽  
pp. 227-233
Author(s):  
Adriana Rosado Valente ANDRIOLI ◽  
Margareth COUTINHO ◽  
Andréa Araújo de VASCONCELLOS ◽  
Milton Edson MIRANDA

Abstract Introduction The correct use of glass fiber posts in endodontically treated teeth is essential for the clinical success of restorative treatment. Objective This study evaluated the push-out shear bond strength of relined (R) or non-relined (NR) glass fiber posts, cemented with self-adhesive resin cement [RelyXTM U100 (U100)] and conventional resin cement [RelyXTM ARC (ARC)]. Material and method Sixty human single-rooted teeth were endodontically treated and divided into ARC-NR; U100-NR; ARC-R; U100-R groups. The teeth were sectioned into cervical, middle and apical thirds, and subjected to the push-out test. Bond strength was analyzed by the Friedman test; cement and post types were compared by the Mann Whitney test. The pattern of failures was evaluated with digital camera through images at 200x magnification, and was classified as adhesive (at the cement/dentin or cement/post interface), cohesive (cement or post), and mixed failures. Result In ARC-NR, bond strength values were higher in the cervical third; in U100-NR and ARC-R they were similar between the thirds. In U100-R, in the cervical and middle thirds the bond strength values were similar, and there was lower value in the apical third. For non-relined glass fiber posts, the highest mean bond strength values were observed with self-adhesive resin cement. Whereas, relined posts cemented with conventional resin cement had stronger cement layer in comparison with non-relined fiber posts. Conclusion The post relining technique was efficient in ARC-R. ARC-NR and U100-R showed improved bond strength in the cervical region of canal walls. The main failures were adhesive at the cement-post interface.


2016 ◽  
Vol 17 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Lourenço Correr-Sobrinho ◽  
Daniele M da Silveira-Pedrosa ◽  
Luis RM Martins ◽  
Mário AC Sinhoreti ◽  
Manoel D Sousa-Neto ◽  
...  

ABSTRACT Aim To evaluate the push-out bond strength (BS) of direct anatomic posts (DAPs) and conventional fiber posts (CFPs) cemented with different luting agents in different thirds of flared root canals. Materials and methods A total of 60 human single-rooted canine teeth were transversally sectioned 16 mm from the radicular apex. After endodontic treatment, canals were flared with diamond burs. Samples were divided into six groups according to post type and luting agent: DAP and RelyX U100 (RXU); DAP and RelyX ARC (RXA); DAP and RelyX Luting 2 (RXL); CFP and RXU; CFP and RXA; CFP and RXL. Roots were sectioned transversely into six 1-mm-thick slices. The push-out test was performed and failure modes were observed. Results The DAP groups (7.23 ± 2.05) showed highest BS values (p < 0.05) when compared with CFP (5.93 ± 1.76). RelyX U100 (8.17 ± 1.70) showed higher BS values (p < 0.05) than RXA (6.46 ± 1.38), and RXL (5.10 ± 1.65) showed the lowest values. Bond strength on the apical third was statistically lower (p < 0.05) than that on the other thirds of the root canals. There was a predominance of adhesive failure for all groups. Conclusion The DAPs improved retention in flared root canals, and RXU was the most effective luting agent. The apical third showed the lowest BS values. Clinical significance The relining procedure of fiber posts with composite and the proper selection of luting resin cement are important for increasing bonding effectiveness in flared root canals. How to cite this article da Silveira-Pedrosa DM, Martins LRM, Sinhoreti MAC, Correr-Sobrinho L, Sousa-Neto MD, Costa ED Jr, de F Pedrosa-Filho C, de Carvalho JR Jr. Push-out Bond Strength of Glass Fiber Posts Cemented in Weakened Roots with Different Luting Agents. J Contemp Dent Pract 2016;17(2): 119-124.


2016 ◽  
Vol 31 (3) ◽  
pp. 120
Author(s):  
Josemar Martins Ferreira ◽  
Sara Rodrigues Renovato ◽  
Fernanda Ribeiro Santana ◽  
Daniel De Almeida Decurcio ◽  
Carlos José Soares ◽  
...  

Objective: This study evaluated the effect of internal bleaching agents on the bond strength of glass fiber posts to root dentine.Methods: Seventy bovine teeth were divided into 7 experimental groups (n=10) according to the bleaching agent used: SpH – sodium perborate + 20% hydrogen peroxide; SpW – sodium perborate + distilled water; Cp37 – 37% carbamide peroxide; Cp16 – 16% carbamide peroxide; Cp10 – 10% carbamide peroxide; H – 35% hydrogen peroxide; C – no bleaching agent (control). After bleaching, posts were cemented with a self-adhesive resin cement (RelyX U100) and the roots were crosssectioned to obtain two discs from each third. The posts underwent micropush-out testing, and bond strength values (MPa) were analyzed using ANOVA in a split-plot arrangement and the Tukey test (p<0.05). Failure mode was evaluated under confocal microscopy.Results: There were no significant differences between the control and bleaching agent groups. Bond strength was greater in the cervical third of the 16% carbamide peroxide (Cp16) group than in the sodium perborate + 20% hydrogen peroxide (SpH) group. The cervical third had a higher bond strength than the apical third in the 10% carbamide peroxide (Cp10), 16% carbamide peroxide (Cp16) and sodium perborate + distilled water (SpW) groups, and no significant differences in the other groups. Adhesive cement-dentine failure was prevalent in all groups.Conclusion: The use of internal bleaching agents did not decrease the bond strength of glass fiber posts to root dentin.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Raneem S. Alofi ◽  
Ibraheem F. Alshiddi ◽  
Yasser F. AlFawaz ◽  
Abdulaziz Alsahhaf ◽  
Khulud Abdulrahman Al-Aali ◽  
...  

Objective. This in vitro study was designed to evaluate the influence of an Er,Cr:YSGG laser on the bond strength of zirconia and glass fiber posts with root dentin. Materials and methods. Ninety extracted single-rooted human teeth were randomized into 6 groups (n = 15/group) on the basis of different posts (zirconia/glass fiber) and Er,Cr:YSGG laser tips (axial and radial). Specimens were prepared for push-out testing with the help of a cutting machine; six slices (2 on each cervical, middle, and apical) of approximately 1 mm thickness were sectioned for all roots on a plane perpendicular to the long axis of the post. All specimens were placed into a universal testing machine with a defined 0.5 mm/min crosshead speed until the maximum failure load was obtained. Results. The highest mean push-out bond strength of the glass fiber and zirconia groups was achieved with laser treatment. The highest push-out bond strength was achieved with the axial fiber tip (7.63 ± 1.22 MPa), and the lowest was achieved with a radial fiber tip of the glass fiber group (6.98 ± 0.96 MPa). ANOVA showed a statistically significant difference between the groups (p=0.041). The mean push-out bond strength was found to be higher with an axial fiber tip for both cervical and apical segments in the glass fiber and zirconia groups (p<0.05). The independent t-test resulted in the overall highest mean push-out bond strength in the apical segments (p=0.026). Conclusion. Within the limits of the present in vitro research study, an enhancement in the push-out bond strength of resin cement, mainly in the cervical region of the root canal, was achieved after irradiation with an Er,Cr:YSGG laser using an axial fiber tip.


2014 ◽  
Vol 39 (4) ◽  
pp. 303 ◽  
Author(s):  
Maryam Khoroushi ◽  
Hamid Mazaheri ◽  
Pardis Tarighi ◽  
Pouran Samimi ◽  
Navid Khalighinejad

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Adricyla Teixeira Rocha ◽  
Leticia Machado Gonçalves ◽  
Ana Júlia de Carvalho Vasconcelos ◽  
Etevaldo Matos Maia Filho ◽  
Ceci Nunes Carvalho ◽  
...  

Aim. The aim of the study was to evaluate, by means of the push-out test, the effect of the anatomical customization of the fiber post on the bond strength of a self-adhesive resin cement. Methods. Twelve endodontically treated, human, upper central incisors were randomly divided into two groups (n=6): control (glass fiber posts cemented with Relyx® U200) and customized (glass fiber posts anatomically customized with translucent composite resin cemented with Relyx U200). The roots were sectioned into three slices, cervical, middle, and apical, and photographed with a digital camera attached to a stereomicroscopic loupe. The images were analyzed by software, for evaluation of the cement line. The slices were subsequently submitted to the push-out test until the post had completely extruded, and the fracture mode was analyzed with a stereomicroscopic loupe. Results. The results showed significant differences between the groups in the different root thirds in relation to the area occupied by air bubbles (p<0.05). Bond strength, when all the thirds are considered, was 8.77 ± 4.89 MPa for the control group and 16.96 ± 4.85 MPa for the customized group. Conclusion. The customized group showed greater bond resistance than the control group and a more uniform cement layer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Amr M. Elnaghy ◽  
Ayman Mandorah ◽  
Ali H. Hassan ◽  
Alaa Elshazli ◽  
Shaymaa Elsaka

Abstract Background To evaluate the effect of surface treatments on the push-out bond strength of Biodentine (BD) and white mineral trioxide aggregate (WMTA) to fiber posts. Methods Two brands of fiber posts were used: Reblida post; RP and RelyX post; RX. Each type of post (n = 80/group) was divided into four groups (n = 20/group) and exposed to surface treatment as follows: Control (no treatment), sandblasting (SB), hydrofluoric acid (HF), and TiF4 4 wt/v%. Each group was further subdivided into two subgroups (n = 10/subgroup) based on the type of CSCs used as follows: Subgroup A: BD and Subgroup B: WMTA. Push-out bond strength of BD and WMTA to glass fiber posts was assessed. Data were statistically analyzed using three-way ANOVA and Tukey’s test. A Weibull analysis was performed on the push-out bond strength data. Results BD showed higher bond strength than WMTA (P < 0.001). The push-out bond strength for posts treated with TiF4 4 wt/v% showed greater bond strength than the other surface treatments (P < 0.05). The BD/RP-TiF4 4 wt/v% showed the greater characteristic bond strength (σ0) (15.93) compared with the other groups. Surface treatments modified the surface topography of glass fiber posts. Conclusions The BD/RP-TiF4 4 wt/v% showed greater bond strength compared with the other groups. The TiF4 4 wt/v% surface treatment enhanced the bond strength of BD and WMTA to glass fiber posts than the other treatments. Surface treatment of fiber post with TiF4 4 wt/v% could be used to improve the bond strength with calcium silicate-based cements.


2021 ◽  
Author(s):  
MER Gama ◽  
GS Balbinot ◽  
GC Ferreira ◽  
EG Mota ◽  
VCB Leitune ◽  
...  

SUMMARY This study aimed to evaluate the cementation and mechanical behavior of flared root canals restored with CAD/CAM milled glass fiber post-and-core systems. Sixty-six endodontically treated human canines with a flared root canal were divided into three different groups according to the type of post: GPF received prefabricated posts; GREL received relined glass fiber posts, and GMILLED received CAD/CAM milled glass fiber posts. Cementation was performed with self-adhesive resin cement. The samples were submitted to x-ray microcomputed tomography analysis for the analysis of voids and gaps. The roots were sectioned and submitted to the push-out bond strength test. The load-to-fracture was evaluated in post-and-core systems. GMILLED presented lower void and lower gap volumes when compared to GPF and GREL. On the load-to-fracture test, GREL presented statistically significant higher values than GMILLED. GPF values had no statistically significant difference from the two other groups. On the push-out bond strength test, GPF presented statistically significant lower values when compared to GREL and GMILLED. The most common failure pattern was between dentin and cement in all groups. CAD/CAM milled glass fiber post-and-core systems presented an enhanced adaptation of glass fiber posts to flared root canal systems. Their results were comparable to relined posts in bond strength, while load-to-fracture-results for GMILLED were lower than those for GPF.


2019 ◽  
Vol 25 ◽  
pp. 376-381 ◽  
Author(s):  
Henrico Badaoui Strazzi Sahyon ◽  
Paloma Pereira da Silva ◽  
Murilo Silva de Oliveira ◽  
Luciano Tavares Angelo Cintra ◽  
Eloi Dezan-Júnior ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Natália Araújo Silva Prado ◽  
Reinaldo de Souza Ferreira ◽  
Marcos Henrique de Pinho Maurício ◽  
Sidnei Paciornik ◽  
Mauro Sayão de Miranda

The present study evaluated the influence of the cement film thickness on the push-out bond strength of glass fiber posts in the cervical, medium, and apical thirds of root canal spaces. Thirty roots were randomly divided into three groups, according to the fiber post system’s drills: (G1) #2; (G2) #3; (G3) #4. The posts were cemented using a self-adhesive cement, and a small amount of powdered Rhodamine B was used as a stain. Images of both sides of each slice were obtained before and after the push-out test. To determine the cement thickness, a macro routine was developed using the software KS 400. The data were analyzed statistically using Kruskal-Wallis and Dunn’s test. G2 (14.62±5.15 MPa) showed statistically higher bond strength values than G1 (10.04±5.13 MPa) and G3 (7.68±6.14 MPa). All groups presented higher bond strength values in the apical third. The bur diameter significantly influenced the results of the shear bond strength for the push-out test. The slight increase in the cement thickness allowed an increase in the values of shear bond strength when compared to very thin or very thick cement films.


Sign in / Sign up

Export Citation Format

Share Document