scholarly journals Effect of a Bioactive Glass Ceramic on the Control of Enamel and Dentin Erosion Lesions

2017 ◽  
Vol 28 (4) ◽  
pp. 489-497 ◽  
Author(s):  
Michelle Alexandra Chinelatti ◽  
Camila Tirapelli ◽  
Silmara Aparecida Milori Corona ◽  
Renato Goulart Jasinevicius ◽  
Oscar Peitl ◽  
...  

Abstract This study evaluated the effect of a bioactive glass ceramic for the control of erosion and caries lesions. Fragments (n=10) of bovine enamel and root dentin received daily application of different treatments (Biosilicate; Acidulated Phosphate Fluoride- APF; Untreated - control) during the performance of erosive cycles. Surfaces were analyzed with 3D optical profilometry to quantify the superficial loss in four periods (1, 7, 14 and 21 days), as well as the lesion depth with confocal laser scanning microscopy. For caries progression assessment, initial Knoop microhardness was measured on enamel bovine fragments. Initial carious lesions were developed and specimens were divided into three groups (n=10), according to the daily topical application (Biosilicate; APF; no application - control), during the de-remineralization cycles for 14 days. Final microhardness was obtained to calculate the change of surface microhardness. Subsurface demineralization was analyzed using cross-sectional microhardness (depths 10, 30, 50, 70, 90, 110 and 220 µm). Data were tested using ANOVA and Tukey’s test (a=5%). Results of erosive evaluation showed that Biosilicate promoted the lowest (p<0.05) values of surface loss, regardless of time, for both enamel and dentin; APF promoted lower (p<0.05) surface loss than control; analyzing different periods of time, APF did not show difference (p>0.05) between 14 and 21 days of demineralization. Results of enamel caries assessment showed that Biosilicate resulted in higher (p<0.05) surface and subsurface microhardness than both APF and control-applications. It may be concluded that Biosilicate application showed a higher potential to reduce surface loss and development of erosion and caries lesions.

2012 ◽  
Vol 23 (2) ◽  
pp. 110-115 ◽  
Author(s):  
Sandrine Bittencourt Berger ◽  
Sabrina Pavan ◽  
Paulo Henrique dos Santos ◽  
Marcelo Giannini ◽  
Ana Karina B. Bedran-Russo

The aim of this study was to evaluate effect of bleaching agents on sound enamel (SE) and enamel with early artificial caries lesions (CL) using confocal laser scanning microscopy (CLSM). Eighty blocks (4 x 5 x 5 mm) of bovine enamel were used and half of them were submitted to a pH cycling model to induce CL. Eight experimental groups were obtained from the treatments and mineralization level of the enamel (SE or CL) (n=10). SE groups: G1 - unbleached (control); G2 - 4% hydrogen peroxide (4 HP); G3 - 4 HP containing 0.05% Ca (Ca); G4 - 7.5% hydrogen peroxide (7.5 HP) containing amorphous calcium phosphate (ACP). CL groups: G5 - unbleached; G6 - 4 HP; G7 - 4 HP containing Ca; G8 - 7.5 HP ACP. G2, G3, G6, G7 were treated with the bleaching agents for 8 h/day during 14 days, while G4 and G8 were exposed to the bleaching agents for 30 min twice a day during 14 days. The enamel blocks were stained with 0.1 mM rhodamine B solution and the demineralization was quantified using fluorescence intensity detected by CLSM. Data were analyzed using ANOVA and Fisher’s tests (α=0.05). For the SE groups, the bleaching treatments increased significantly the demineralization area when compared with the unbleached group. In the CL groups, no statistically significant difference was observed (p>0.05).The addition of ACP or Ca in the composition of the whitening products did not overcome the effects caused by bleaching treatments on SE and neither was able to promote remineralization of CL.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 605 ◽  
Author(s):  
Oluwatoyin O. Onipe ◽  
Daniso Beswa ◽  
Afam I. O. Jideani

A double staining protocol for image acquisition using confocal microscopy (CLSM) coupled with image analysis was employed to elucidate the crust and cross-sectional properties of fried dough. Penetrated oil by image analysis (POia), porosity and pore features were quantified from the cross-section micrographs. Crust surface roughness was measured using fractal metrics and fat content was determined by solvent extraction using the American Association of Cereal Chemists method. Crumb porosity ranged between 54.94%–81.84% and reduced (p < 0.05) with bran addition. Crumb pore sizes ranged from 0–475 µm with <1 circularity, indicating elliptical shape. POia values were notably higher (p < 0.05) than PO by Soxhlet extraction (POsox), except for wheat bran (WB) fried dough where the values of POia and POsox were closely ranked. The linear effect of initial moisture content and bran concentration showed a significant impact on the image properties. The mean fractal dimension (FD) decreased as initial moisture increased. The addition of WB caused a significant reduction in the FD of fried dough, while the opposite effect was noted for its oat bran counterpart. Due to non-collinearity of image properties (FD, POia and porosity), data were fitted to cubic polynomial regression with R2 values > 0.70. CLSM and image analysis were effective in measuring oil absorption and interpreting crumb properties of fried dough. The protocol used in this study can be applied to other thick deep-fried foods for qualitative observation and quantitative measurement of a specific physical or chemical property.


2014 ◽  
Vol 80 (23) ◽  
pp. 7324-7336 ◽  
Author(s):  
L. Karygianni ◽  
S. Ruf ◽  
M. Follo ◽  
E. Hellwig ◽  
M. Bucher ◽  
...  

ABSTRACTAntimicrobial photodynamic therapy (APDT) has gained increased attention as an alternative treatment approach in various medical fields. However, the effect of APDT using visible light plus water-filtered infrared A (VIS + wIRA) on oral biofilms remains unexplored. For this purpose, initial and mature oral biofilms were obtainedin situ; six healthy subjects wore individual upper jaw acrylic devices with bovine enamel slabs attached to their proximal sites for 2 h or 3 days. The biofilms were incubated with 100 μg ml−1toluidine blue O (TB) or chlorin e6 (Ce6) and irradiated with VIS + wIRA with an energy density of 200 mW cm−2for 5 min. After cultivation, the CFU of half of the treated biofilm samples were quantified, whereas following live/dead staining, the other half of the samples were monitored by confocal laser scanning microscopy (CLSM). TB- and Ce6-mediated APDT yielded a significant decrease of up to 3.8 and 5.7 log10CFU for initial and mature oral biofilms, respectively. Quantification of the stained photoinactivated microorganisms confirmed these results. Overall, CLSM revealed the diffusion of the tested photosensitizers into the deepest biofilm layers after exposure to APDT. In particular, Ce6-aided APDT presented elevated permeability and higher effectiveness in eradicating 89.62% of biofilm bacteria compared to TB-aided APDT (82.25%) after 3 days. In conclusion, antimicrobial photoinactivation using VIS + wIRA proved highly potent in eradicating oral biofilms. Since APDT excludes the development of microbial resistance, it could supplement the pharmaceutical treatment of periodontitis or peri-implantitis.


1998 ◽  
Vol 64 (11) ◽  
pp. 4115-4127 ◽  
Author(s):  
Martin Kuehn ◽  
Martina Hausner ◽  
Hans-Joachim Bungartz ◽  
Michael Wagner ◽  
Peter A. Wilderer ◽  
...  

ABSTRACT The purpose of this study was to develop and apply a quantitative optical method suitable for routine measurements of biofilm structures under in situ conditions. A computer program was designed to perform automated investigations of biofilms by using image acquisition and image analysis techniques. To obtain a representative profile of a growing biofilm, a nondestructive procedure was created to study and quantify undisturbed microbial populations within the physical environment of a glass flow cell. Key components of the computer-controlled processing described in this paper are the on-line collection of confocal two-dimensional (2D) cross-sectional images from a preset 3D domain of interest followed by the off-line analysis of these 2D images. With the quantitative extraction of information contained in each image, a three-dimensional reconstruction of the principal biological events can be achieved. The program is convenient to handle and was generated to determine biovolumes and thus facilitate the examination of dynamic processes within biofilms. In the present study, Pseudomonas fluorescens or a green fluorescent protein-expressing Escherichia coli strain, EC12, was inoculated into glass flow cells and the respective monoculture biofilms were analyzed in three dimensions. In this paper we describe a method for the routine measurements of biofilms by using automated image acquisition and semiautomated image analysis.


2020 ◽  
Author(s):  
Ning Guan ◽  
Yiqi Shi ◽  
Haoyu Tong ◽  
Yanpeng Yang ◽  
Jiahui Li ◽  
...  

Abstract Objectives:Here, we investigated the inhibitory effects of coenzyme Q0 (CoQ0) on biofilm formation and the expression of virulence genes by Cronobacter sakazakii. Results:We found that the minimum inhibitory concentration of CoQ0 against C. sakazakii strains ATCC29544 and ATCC29004 was 100 μg/mL, while growth curve assays showed that sub-inhibitory concentrations (SICs) of CoQ0 for both strains were 6.4, 3.2, 1.6 and 0.8 μg/mL. Assays exploring the inhibition of specific biofilm formation showed that SICs of CoQ0 inhibited biofilm formation by C. sakazakii in a dose-dependent manner, which was confirmed by scanning electron microscopy and confocal laser scanning microscopy analyses. CoQ0 inhibited the swimming and swarming motility of C. sakazakii and reduced its ability to adhere to and invade HT-29 cells. In addition, CoQ0 impeded the ability of C. sakazakii to survive and replicate within RAW 264.7 cells. Finally, real time polymerase chain reaction analysis confirmed that nine C. sakazakii genes associated with biofilm formation and virulence were down-regulated in response to CoQ0 treatment. Conclusion:Overall, our findings suggest that CoQ0 is a promising antibiofilm agent and provide new insights for the prevention and control of infections caused by C. sakazakii.


2019 ◽  
Vol 37 (No. 4) ◽  
pp. 226-231 ◽  
Author(s):  
Feng Jia ◽  
Jinshui Wang ◽  
Yu Chen ◽  
Xia Zhang ◽  
Qi Wang ◽  
...  

To investigate a comparative evaluation of the gluten polymerization properties at different oil contents during the extrusion processing, the electrophoretic profiles of the gluten, free sulfhydryl (SH) compounds, the secondary structure of gluten, glutenin macropolymer contents and gluten network were measured. Five gluten samples were formulated by adding different oil contents. The low molecular weight contents of gluten decreased as well as the high molecular weight contents increased during the extrusion processing. The free SH of gluten at 8 or 10% oil content drops significantly to a minimum. The β-sheets contents of gluten have significantly difference between the treatments and control, except for 15 and 20% oil content treatments. Confocal laser scanning microscopy of mixed glutens correlated to the degree of oil contents with the gluten in the bi-continuous gluten network.


2021 ◽  
Author(s):  
Steffen Geisel ◽  
Eleonora Secchi ◽  
Jan Vermant

Biofilms, bacterial communities of cells encased by a self-produced matrix, exhibit a variety of three-dimensional structures. Specifically, channel networks formed within the bulk of the biofilm have been identified to play an important role in the colonies viability by promoting the transport of nutrients and chemicals. Here, we study channel formation and focus on the role of the adhesion of the biofilm matrix to the substrate in Pseudomonas aeruginosa biofilms grown under constant flow in microfluidic channels. We perform phase contrast and confocal laser scanning microscopy to examine the development of the biofilm structure as a function of the substrates surface energy. The formation of the wrinkles and folds is triggered by a mechanical buckling instability, controlled by biofilm growth rate and the film's adhesion to the substrate. The three-dimensional folding gives rise to hollow channels that rapidly increase the overall volume occupied by the biofilm and facilitate bacterial movement inside them. The experiments and analysis on mechanical instabilities for the relevant case of a bacterial biofilm grown during flow enable us to predict and control the biofilm morphology.


Author(s):  
Haruka M. Funakoshi ◽  
Takumi T. Shito ◽  
Kotaro Oka ◽  
Kohji Hotta

Ascidiella aspersa is an ascidian in the class of chordates—the closest relatives of vertebrates. A. aspersa is a potential model organism for bio-imaging studies due to its extremely transparent embryos as well as is a globally distributed cosmopolitan species. However, there is no standard developmental table for this organism. Here, as a first step to establish A. aspersa as a model organism, we report a standard developmental table as a web-based digital image resource. This resource used confocal laser scanning microscopy to scan more than 3,000 cross-sectional images and 3D-reconstructed images of A. aspersa embryos during embryogenesis. With reference to the standardized developmental table of Ciona intestinalis type A, 26 different developmental stages (Stages 1–26) from fertilized eggs to hatched larvae were redefined for A. aspersa. Cell lineages up to the cleavage period were annotated: The cleavage patterns, the embryonic morphology, and the developmental time were then compared with Ciona. We found that the cleavage patterns and developmental time up to the neurula period in A. aspersa were extremely conserved versus. Ciona. The ratio of the trunk and tail length in the tailbud period were smaller than Ciona indicating a relatively short tail. In addition, the timing of the bending of the tail is earlier than Ciona. This A. aspersa standard 3D digital resource is essential for connecting different omics data to different spatiotemporal hierarchies and is useful for a system-level understanding of chordate development and evolution.


Sign in / Sign up

Export Citation Format

Share Document