scholarly journals Performance, Carcass Traits, Biochemical and Hematological Profile, Ileal Microbiota and Nutrient Metabolizability in Broilers Fed Diets Containing Cell Wall of Saccharomyces Cerevisiae and Piperine

Author(s):  
BS Trindade ◽  
CAR Lima ◽  
VS Cardoso ◽  
GM Direito ◽  
NJB Machado ◽  
...  
Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 238 ◽  
Author(s):  
Muhammad Arif ◽  
Atia Iram ◽  
Muhammad A. K. Bhutta ◽  
Mohammed A. E. Naiel ◽  
Mohamed E. Abd El-Hack ◽  
...  

A feeding trial (35 days) was carried out to investigate the effect of Saccharomyces cerevisiae cell wall as a mycotoxin biodegradation agent on the performance, feed efficiency, carcass traits, and immunity response against diseases in broilers fed aflatoxin B1 contaminated diets. For this purpose, 200 one day old broilers were randomly allotted into four groups, each with five replicates (10 birds per replicate). Four starter and finisher experimental rations were formulated by using (A) 0, (B) 1.25, (C) 2.5, and (D) 3.75 g kg−1 of Saccharomyces cerevisiae. Experimental diets were contaminated with aflatoxin B1 (100 ppb kg−1 diet). The experimental chicks were kept under standard managerial conditions, and the vaccination program was followed against infectious bursal disease (IBD), infectious bronchitis (IB), and Newcastle disease (ND) diseases. At the end of the feeding trial, carcass, organ weight, and blood samples were collected randomly to determine the carcass traits and antibody titer against ND and IBD viruses. Throughout the experiment, the addition of 3.75 g kg−1 of the Saccharomyces cerevisiae cell wall (Group-D) in feed resulted in the highest weight gain, final weight, feed intake, and the lowest FCR values followed by C group compared with the other groups. All carcass traits were significantly (p > 0.05) improved by increasing the inclusion levels of Saccharomyces cerevisiae in broiler diets. It could be concluded that the broiler diet supplemented with 2.5 or 3.75 g kg−1 of Saccharomyces cerevisiae as a biodegrading agent resulted in improved growth performance, immunity activity and carcass traits, and supplementation with Saccharomyces cerevisiae at these levels can be used effectively in broiler diets without negatively affecting bird health status.


Author(s):  
Gerrit J. P. Dijkgraaf ◽  
Huijuan Li ◽  
Howard Bussey

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Sun ◽  
Jae Won Lee ◽  
Sangdo Yook ◽  
Stephan Lane ◽  
Ziqiao Sun ◽  
...  

AbstractPlant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass.


Micron ◽  
2021 ◽  
pp. 103091
Author(s):  
Raissa D. Moura ◽  
Lauanda M. Carvalho ◽  
Brígida A.A. Spagnol ◽  
Tarcio Carneiro ◽  
Ane Catarine Tosi Costa ◽  
...  

2004 ◽  
Vol 48 (10) ◽  
pp. 3871-3876 ◽  
Author(s):  
Sarit Markovich ◽  
Aya Yekutiel ◽  
Itamar Shalit ◽  
Yona Shadkchan ◽  
Nir Osherov

ABSTRACT The antifungal agent caspofungin (CAS) specifically interferes with glucan synthesis and cell wall formation. To further study the cellular processes affected by CAS, we analyzed a Saccharomyces cerevisiae mutant collection (4,787 individual knockout mutations) to identify new genes affecting susceptibility to the drug. This collection was screened for increased CAS sensitivity (CAS-IS) or increased CAS resistance (CAS-IR). MICs were determined by the broth microdilution method. Disruption of 20 genes led to CAS-IS (four- to eightfold reductions in the MIC). Eleven of the 20 genes are involved in cell wall and membrane function, notably in the protein kinase C (PKC) integrity pathway (MID2, FKS1, SMI1, and BCK1), chitin and mannan biosynthesis (CHS3, CHS4, CHS7, and MNN10), and ergosterol biosynthesis (ERG5 and ERG6). Four of the 20 genes (TPO1, VPS65, VPS25, and CHC1) are involved in vacuole and transport functions, 3 of the 20 genes (CCR4, POP2, and NPL3) are involved in the control of transcription, and 2 of the 20 genes are of unknown function. Disruption of nine additional genes led to CAS-IR (a fourfold increase of MIC). Five of these nine genes (SLG1, ERG3, VRP1, CSG2, and CKA2) are involved in cell wall function and signal transduction, and two of the nine genes (VPS67 and SAC2) are involved in vacuole function. To assess the specificity of susceptibility to CAS, the MICs of amphotericin B, fluconazole, flucytosine, and calcofluor for the strains were tested. Seven of 20 CAS-IS strains (with disruption of FKS1, SMI1, BCK1, CHS4, ERG5, TPO1, and ILM1) and 1 of 9 CAS-IR strains (with disruption of SLG1) demonstrated selective susceptibility to CAS. To further explore the importance of PKC in CAS susceptibility, the activity of the PKC inhibitor staurosporine in combination with CAS was tested against eight Aspergillus clinical isolates by the microdilution assay. Synergistic or synergistic-to-additive activities were found against all eight isolates by use of both MIC and minimum effective concentration endpoints.


2003 ◽  
Vol 50 (s1) ◽  
pp. 676-677 ◽  
Author(s):  
PAWAN K. VOHRA ◽  
THEODORE J. KOTTOM ◽  
ANDREW H. LIMPER ◽  
CHARLES F. THOMAS

2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


Sign in / Sign up

Export Citation Format

Share Document