scholarly journals GENETIC PARAMETER ESTIMATES FOR PRODUCTION AND REPRODUCTION TRAITS IN DAIRY BUFFALOES

2016 ◽  
Vol 29 (1) ◽  
pp. 216-221 ◽  
Author(s):  
CAMILA DA COSTA BARROS ◽  
RÚSBEL RAUL ASPILCUETA-BORQUIS ◽  
ANGELINA BOSSI FRAGA ◽  
HUMBERTO TONHATI

ABSTRACT: The objective of this study was to determine the genetic variation in milk production, milk components, and reproductive traits in dairy buffaloes. A total of 9,318 lactation records from 3,061 cows were used to estimate the heritability of milk yield (MY), fat percentage (%F), protein percentage (%P), lactation length (LL), calving interval (CI), and age at first calving (AFC), as well as genetic and phenotypic correlations between these traits. Covariance components were estimated by Bayesian inference in a multitrait animal model using the GIBBS2F90 program. Contemporary groups and number of milkings (1 or 2) were included as fixed effects, age of dam at calving (linear and quadratic effects) as a covariate, and additive genetic, permanent environmental, and residual effects as random effects. The heritability estimates (± standard deviation) were 0.24 ± 0.02, 0.34 ± 0.05, 0.40 ± 0.05, 0.09 ± 0.01, 0.05 ± 0.01, and 0.16 ± 0.04 for MY, %F, %P, LL, CI, and AFC, respectively. The genetic correlations between MY and %F, %P, LL, CI, and AFC were -0.29, -0.18, 0.66, 0.08, and 0.24, respectively. Milk production and milk components showed sufficient genetic variation to obtain genetic gains through selection. The genetic correlations between MY and milk components were negative, and thus, undesirable because efforts to increase MY may decrease milk quality. Reproductive traits had little genetic influence, indicating that improvement of management would be sufficient to obtain better performance.

2021 ◽  
Vol 38 (1) ◽  
pp. 14-22
Author(s):  
M. Orunmuyi ◽  
I. A. Adeyinka ◽  
O.O Oni

A study was conducted to estimate the genetic parameters of fertility and hatchability in two strains of Rhode Island Red (RIR) Chickens denoted as Strain A and Strain B respectively using the full-sib (sire +dam variance) and maternal half-sib (dam variance) components. The birds were obtained from the selected populations of RIR Chickens kept at the poultry breeding programme of National Animal Production Research Institute, Shika, Zaria, Nigeria. Settable eggs were collected from mating 28 cocks to 252 hens in a ratio of 1cock:9 hens from each strain. Eggs were pedigreed according to sire and dam. Results showed that values obtained for number of egg set (EGGSET), number of fertile eggs (NFERT), number of hatched chicks (NHATCH), percentage of chicks hatched from total eggs set (PHATCH) and percentage of chicks hatched from fertile eggs (PHATCHBL) were all higher in strain A than strain B. Heritability estimates obtained from the full-sib and maternal half-sib analysis ranged from medium to high for the two strains (0.24-0.96). The maternal half sib estimates were higher (0.40-0.96) than the estimates obtained from full sibs (0.24- 0.48). Genetic and phenotypic correlations obtained for both strains were positive and similar regardless of method of estimation. Genetic correlations between EGGSET and PFERT were low in strain A using both full-sib and maternal half-sib analyses (0.09-0.14). Phenotypic correlations between EGGSET and PFERT, PHATCH and PHATCHBL were also low in both strains and regardless of method of analyses. Moderate to high heritability estimates suggest that genetic improvement can be obtained by selection of these reproductive traits. The full-sib analysis for estimating heritability will be preferred since it is assumed that only additive genetic variance contributes to the covariance between family members.


2009 ◽  
Vol 21 (1) ◽  
pp. 169 ◽  
Author(s):  
F. A. Di Croce ◽  
A. M. Saxton ◽  
N. R. Rohrbach ◽  
F. N. Schrick

Genetic selection has made tremendous progress on economically important traits in the beef industry. Most of the progress has been from quantitative genetics through use of expected progeny differences (EPD). These values allow prediction of differences in progeny of a sire compared to progeny of other sires. Development of EPD for male and female reproductive traits has largely been ignored because of low heritability of reproductive traits, even though reproduction plays a vital role in the economics of beef operations. Therefore, continued research in the area of genetic selection for fertility is becoming increasingly important. Critical limiting factors for animal breeding programs using MOET nucleus schemes include variability in superovulatory response of donor animals and resulting pregnancy of transferred embryos. Thus, the overall objective of this research was to develop genetic parameters associated with MOET to assist producers in identifying animals with greater genetic merit for these protocols. Records were examined from a large-scale MOET system in beef cattle that contained data only for cows in which at least one transferable embryo was obtained. Data on these animals were extracted and analyzed on 10 425 transferred embryos (2900 collections) from 611 donor animals (Angus, Brangus, and Charolais) utilizing semen from 215 bulls. Phenotypic traits examined included pregnancy status of the recipient following transfer (ET-preg; determined by rectal palpation at 60 days post-transfer and/or confirmed calving date of recipient), number of transferable embryos per collection (ET-trans), and number of unfertilized ova at collection (ET-UFO). Basic statistical analysis and pedigree/trait files were developed using procedures in SAS (SAS Institute, Cary, NC). Genetic parameters were estimated for a single-trait animal model using restricted maximum likelihood (REML) procedures in Wombat (Meyer K 2007 Zhejiang Uni. Science B 8, 815–821). Wombat also computed EPD and standard errors for each trait evaluated. The model included fixed effects of year as well as random animal and residual effects. The EPD for ET-preg ranged from –6.1 to 4.4% (SE = 2.2 to 4.2) for semen sires (sires of the transferred embryos) and –5.3 to 3.8% (SE = 3.2 to 4.2) for donor animals. Additionally, the heritability estimated for ET-preg was 0.03. Heritability estimated for ET-trans was 0.00, indicating minute genetic variation and thus, EPD were not presented. Heritability estimated for ET-UFO was 0.05 with EPD values (deviation of the number of UFO from the mean) ranging from –0.6 to 0.8 (SE = 0.3 to 0.6) for semen sires and –0.4 to 1.1 (SE = 0.5 to 0.6) for donor cows. As previously shown for reproductive traits, heritability of ET-preg, ET-trans, and ET-UFO was low. Genetic improvement in fertility by selection on embryo transfer traits is possible, but progress would be slow. Further studies are underway on a larger dataset to refine these estimates and to examine repeatability.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 21-22
Author(s):  
Lindsay R Upperman ◽  
Larry A Kuehn ◽  
Matthew L Spangler

Abstract The objective of this study was to estimate genetic parameters for days on feed (DOF), age at slaughter (AAS), and their relationships with carcass traits, including: marbling score (MARB), adjusted fat thickness (AFT), hot carcass weight (HCW), ribeye area (REA), and final live weight (FW). Data were from steers and heifers (n = 7,747) from the Germplasm Evaluation Program at the U.S. Meat Animal Research Center. All traits were analyzed with univariate and bivariate animal models using ASReml. Fixed effects fitted for all models included contemporary group (concatenation of birth year and season, sex, and experimental treatment group), breed fractions, and direct heterosis. Different endpoints were also investigated by fitting fixed linear covariates of AFT, HCW, REA, MARB, FW, and age (except AAS and DOF). For a given bivariate analyses, both traits were adjusted to the same endpoint. Univariate heritability estimates for AFT, AAS, DOF, FW, HCW, MARB, and REA ranged from 0.45–0.52, 0.52–0.59, 0.33–0.39, 0.34–0.55, 0.34–0.55, 0.54–0.55, and 0.50–0.56, respectively. Covariates of MARB and AFT led to the highest and lowest, respectively, heritability estimates for AAS and DOF. Depending on the endpoint, genetic correlations between AAS and AFT, FW, HCW, MARB, and REA ranged from 0.16 to 0.32, -0.08 to 0.33, 0.19 to 0.36, 0.14 to 0.20, and -0.06 to 0.13 (Table 1). Genetic correlations between DOF and AFT, MARB, and REA were negligible. Genetic correlations between DOF, FW, and HCW ranged from -0.10 to 0.29 and -0.37 to -0.17. Standard errors were less than 0.07 for all estimates. Phenotypic variability in DOF was low, and increased variability in AAS was due to differences in date of birth and thus weaning age. Results indicate DOF and AAS are moderately to highly heritable and generally lowly correlated with routine carcass traits. The USDA is an equal opportunity employer.


2004 ◽  
Vol 79 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Y. M. Chang ◽  
D. Gianola ◽  
B. Heringstad ◽  
G. Klemetsdal

AbstractClinical mastitis records on 36 178 first-lactation Norwegian dairy cattle (NRF) cows, daughters of 245 sires from 5286 herds, were analysed to study the impact of trait definition on estimates of genetic parameters and sire evaluations for clinical mastitis. The opportunity interval for infection, going from 30 days pre-calving to 300 days post partum, was divided into either 11 periods (each 30 days long); four periods ((-30, 0), (1, 30), (31, 120), (121, 300)); a single period (-30, 300) or defined as the interval currently used for sire evaluation in Norway (-15,120). Within each period, clinical mastitis was scored as 1 if it occurred at least once and 0 otherwise. Analysis was with Bayesian threshold models, assuming that mastitis (presence v. absence) was a different trait in each period. By use of multivariate or univariate normal link functions, unobserved liabilities to disease were modelled as a linear function of year of calving, age-season of calving, herd, sire of cow and residual effects. Estimates of heritability of liability to clinical mastitis ranged from 0-06 to 0-14, depending on the model and stage of lactation. In multi-period models, estimates of genetic correlations between periods were positive and ranged from 0-13 to 0-55. This suggests that clinical mastitis resistance is not the same trait in different periods of the first lactation, which is not captured by the single-interval models. The single-interval (-30, 300) model gave slightly smaller sire-specific posterior probabilities of clinical mastitis during the first lactation than the multi-period models. Furthermore, the interval used in current Norwegian sire evaluation understated the posterior probabilities of clinical mastitis, relative to the multi-period specifications. This led to some differences in sire rankings between the four models, although there was agreement between the four- and 11-period models. In conclusion, the multi-period models captured more genetic variation than the single-interval models, but the four-period model gave sire rankings that differed little from those obtained with an 11-period definition of clinical mastitis.


2016 ◽  
Vol 59 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Hafedh Ben Zaabza ◽  
Abderrahmen Ben Gara ◽  
Hedi Hammami ◽  
Borni Jemmali ◽  
Mohamed Amine Ferchichi ◽  
...  

Abstract. Multi-trait Bayesian procedure was used to estimate genetic parameters for reproductive traits in Tunisian Holstein cows. A total of 31 348 lactations of the calving years 2005 to 2012 were analyzed. Fertility traits were the calving interval (CI), days open (DO), days to first insemination (DFI), days from first insemination to conception (FIC), and number of inseminations per conception (NI). Posterior means of heritabilities of CI, DO, DFI, FIC, and NI were 0.047, 0.03, 0.025, 0.024, and 0.069, respectively. Posterior means of repeatabilities of the same respective traits were 0.106, 0.094, 0.051, 0.036, and 0.17. Genetic correlations among female fertility traits were also computed. Calving interval and DO had the highest genetic correlation estimate (0.85) because they have overlapping genetic meanings. The lowest genetic correlation estimate (−0.25) was found between DFI and NI. Genetic parameter estimates are low and are even lower than those reported in most literature, implying that more focus should be put upon improving the management of reproduction in dairy cattle herds in Tunisia.


Author(s):  
Rahman Hussein AL-Qasimi ◽  
Shatha Mohammed Abbas ◽  
Allawi L.D. AL-Khauzai

The study was carried out on 19 ewes of local Awassi sheep and 12ewes local Arabi sheep in the Al-kafeel sheep station Karbala, to determine the effect of breed and some non-genetic factors such as (sex of the lamb, type of birth, age and weight of ewes at birth) on daily and total milk production and lactation period and some of milk components (fat, protein and lactose). The results showed that a significant effect (P <0.05) of the breed on milk production traits where Awassi sheep recorded the highest mean (0.91 kg , 101.63 kg , 104.86 day) compared to the Arabi sheep she was means (0.77 kg , 88.15 kg , 99.15 day) respectively. As well as in proportions of milk components with mean( 5.1 , 4.90 , 5.51) % respectively compared to the Arabi sheep (4.70 . 4.20 . 4.89) ewes with male lambs also exceeded superior ewes with female lambs in daily and total milk production and the lactation period the sex of the lamb did not affect the proportions of milk components the weight of the ewes had a significant effect (P <0.05) in milk production attributes with superior weight of ewes on lower ewes and did not affect the proportions of milk ingredients except for lactose. The type of birth and the age of the ewes did not have a significant effect in all the studied traits except for the superiority (P<0.05) of young ewes on age ewes in the fat percentage of milk.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 158-159
Author(s):  
Chad A Russell ◽  
E J Pollak ◽  
Matthew L Spangler

Abstract The commercial beef cattle industry relies heavily on the use of natural service sires. Either due to the size of breeding herds or to safe-guard against injury during the breeding season, multiple-sire breeding pastures are utilized. Although each bull might be given an equal opportunity to produce offspring, evidence suggest that there is substantial variation in the number of calves sired by each bull in a breeding pasture. DNA-based paternity assignment enables correct assignment of calves to their respective sires in multi-sire pastures and presents an opportunity to investigate the degree to which this trait complex is under genetic control. Field data from a large commercial ranch were used to estimate genetic parameters for calf count (CC; n=623) and yearling scrotal circumference (SC; n=1962) using univariate and bivariate animal models. Average CC and SC were 12.1±11.1 calves and 35.4±2.30 cm, respectively. Average number breeding seasons per bull and bulls per contemporary group were 1.40 and 24.9, respectively. The model for CC included fixed effects of age during the breeding season (in years) and contemporary group (concatenation of breeding pasture and year). Random effects included additive genetic and permanent environmental effects, and a residual. The model for SC included fixed effects of age (in days) and contemporary group (concatenation of month and year of measurement). Random effects included an additive genetic effect and a residual. Univariate model heritability estimates for CC and SC were 0.237±0.156 and 0.456±0.072, respectively. Similarly, the bivariate model resulted in heritability estimates for CC and SC of 0.240±0.155 and 0.461±0.072, respectively. Repeatability estimates for CC from univariate and bivariate models were 0.517±0.054 and 0.518±0.053, respectively. The estimate of genetic correlation between CC and SC was 0.270±0.220. Parameter estimates suggest that both CC and SC would respond favorably to selection and that CC is moderately repeatable.


2007 ◽  
Vol 58 (8) ◽  
pp. 839 ◽  
Author(s):  
V. M. Ingham ◽  
N. M. Fogarty ◽  
A. R. Gilmour ◽  
R. A. Afolayan ◽  
L. J. Cummins ◽  
...  

The study estimated heritability for lamb growth and carcass performance, hogget ewe wool production, and worm egg count among crossbred progeny of maternal breed sires, as well as the genetic and phenotypic correlations among the traits. The data were from crossbred progeny of 91 sires from maternal breeds including Border Leicester, East Friesian, Finnsheep, Coopworth, White Suffolk, Corriedale, and Booroola Leicester. The sires were mated to Merino ewes at 3 sites over 3 years (and also Corriedale ewes at one site), with 3 common sires used at each site and year to provide genetic links. These sheep comprised part of the national maternal sire central progeny test program (MCPT) to evaluate the genetic variation for economically important production traits in progeny of maternal and dual-purpose (meat and wool) sires and the scope for genetic improvement. The matings resulted in 7846 first-cross lambs born, with 2964 wether lambs slaughtered at an average age of 214 days, and wool data from 2795 hogget ewes. Data were analysed using univariate mixed models containing fixed effects for site, year, sex and type of birth and rearing, dam source and sire breed, and random terms for sire and dam effects. Heritabilities and genetic correlations were estimated based on variances from progeny of 70 sires by fitting the same mixed models using a REML procedure in univariate and multivariate analyses. Estimates of heritability were low for lamb growth traits (0.07–0.29), meat colour and meat pH (0.10–0.23), and faecal worm egg count (0.10), moderate for carcass fat and muscle traits (0.32–0.47), and moderate to high for wool traits (0.36–0.55). Estimates of direct genetic correlations among liveweights at various ages were high and positive (0.41–0.77) and those between liveweights and most carcass and meat quality traits were small and varied in sign. Liveweights were moderately to highly positively correlated with most wool traits, except fibre diameter (–0.28–0.08). The study indicates that there is genetic variation for wool, growth, carcass, and meat quality traits, as well as for faecal worm egg count, with scope for selection within Australian maternal sire breeds of sheep.


Sign in / Sign up

Export Citation Format

Share Document