scholarly journals 37 Genetic parameter estimates for days on feed, age at slaughter, and carcass traits in a multi-breed beef cattle population

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 21-22
Author(s):  
Lindsay R Upperman ◽  
Larry A Kuehn ◽  
Matthew L Spangler

Abstract The objective of this study was to estimate genetic parameters for days on feed (DOF), age at slaughter (AAS), and their relationships with carcass traits, including: marbling score (MARB), adjusted fat thickness (AFT), hot carcass weight (HCW), ribeye area (REA), and final live weight (FW). Data were from steers and heifers (n = 7,747) from the Germplasm Evaluation Program at the U.S. Meat Animal Research Center. All traits were analyzed with univariate and bivariate animal models using ASReml. Fixed effects fitted for all models included contemporary group (concatenation of birth year and season, sex, and experimental treatment group), breed fractions, and direct heterosis. Different endpoints were also investigated by fitting fixed linear covariates of AFT, HCW, REA, MARB, FW, and age (except AAS and DOF). For a given bivariate analyses, both traits were adjusted to the same endpoint. Univariate heritability estimates for AFT, AAS, DOF, FW, HCW, MARB, and REA ranged from 0.45–0.52, 0.52–0.59, 0.33–0.39, 0.34–0.55, 0.34–0.55, 0.54–0.55, and 0.50–0.56, respectively. Covariates of MARB and AFT led to the highest and lowest, respectively, heritability estimates for AAS and DOF. Depending on the endpoint, genetic correlations between AAS and AFT, FW, HCW, MARB, and REA ranged from 0.16 to 0.32, -0.08 to 0.33, 0.19 to 0.36, 0.14 to 0.20, and -0.06 to 0.13 (Table 1). Genetic correlations between DOF and AFT, MARB, and REA were negligible. Genetic correlations between DOF, FW, and HCW ranged from -0.10 to 0.29 and -0.37 to -0.17. Standard errors were less than 0.07 for all estimates. Phenotypic variability in DOF was low, and increased variability in AAS was due to differences in date of birth and thus weaning age. Results indicate DOF and AAS are moderately to highly heritable and generally lowly correlated with routine carcass traits. The USDA is an equal opportunity employer.

Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 158-159
Author(s):  
Chad A Russell ◽  
E J Pollak ◽  
Matthew L Spangler

Abstract The commercial beef cattle industry relies heavily on the use of natural service sires. Either due to the size of breeding herds or to safe-guard against injury during the breeding season, multiple-sire breeding pastures are utilized. Although each bull might be given an equal opportunity to produce offspring, evidence suggest that there is substantial variation in the number of calves sired by each bull in a breeding pasture. DNA-based paternity assignment enables correct assignment of calves to their respective sires in multi-sire pastures and presents an opportunity to investigate the degree to which this trait complex is under genetic control. Field data from a large commercial ranch were used to estimate genetic parameters for calf count (CC; n=623) and yearling scrotal circumference (SC; n=1962) using univariate and bivariate animal models. Average CC and SC were 12.1±11.1 calves and 35.4±2.30 cm, respectively. Average number breeding seasons per bull and bulls per contemporary group were 1.40 and 24.9, respectively. The model for CC included fixed effects of age during the breeding season (in years) and contemporary group (concatenation of breeding pasture and year). Random effects included additive genetic and permanent environmental effects, and a residual. The model for SC included fixed effects of age (in days) and contemporary group (concatenation of month and year of measurement). Random effects included an additive genetic effect and a residual. Univariate model heritability estimates for CC and SC were 0.237±0.156 and 0.456±0.072, respectively. Similarly, the bivariate model resulted in heritability estimates for CC and SC of 0.240±0.155 and 0.461±0.072, respectively. Repeatability estimates for CC from univariate and bivariate models were 0.517±0.054 and 0.518±0.053, respectively. The estimate of genetic correlation between CC and SC was 0.270±0.220. Parameter estimates suggest that both CC and SC would respond favorably to selection and that CC is moderately repeatable.


2021 ◽  
Vol 38 (1) ◽  
pp. 14-22
Author(s):  
M. Orunmuyi ◽  
I. A. Adeyinka ◽  
O.O Oni

A study was conducted to estimate the genetic parameters of fertility and hatchability in two strains of Rhode Island Red (RIR) Chickens denoted as Strain A and Strain B respectively using the full-sib (sire +dam variance) and maternal half-sib (dam variance) components. The birds were obtained from the selected populations of RIR Chickens kept at the poultry breeding programme of National Animal Production Research Institute, Shika, Zaria, Nigeria. Settable eggs were collected from mating 28 cocks to 252 hens in a ratio of 1cock:9 hens from each strain. Eggs were pedigreed according to sire and dam. Results showed that values obtained for number of egg set (EGGSET), number of fertile eggs (NFERT), number of hatched chicks (NHATCH), percentage of chicks hatched from total eggs set (PHATCH) and percentage of chicks hatched from fertile eggs (PHATCHBL) were all higher in strain A than strain B. Heritability estimates obtained from the full-sib and maternal half-sib analysis ranged from medium to high for the two strains (0.24-0.96). The maternal half sib estimates were higher (0.40-0.96) than the estimates obtained from full sibs (0.24- 0.48). Genetic and phenotypic correlations obtained for both strains were positive and similar regardless of method of estimation. Genetic correlations between EGGSET and PFERT were low in strain A using both full-sib and maternal half-sib analyses (0.09-0.14). Phenotypic correlations between EGGSET and PFERT, PHATCH and PHATCHBL were also low in both strains and regardless of method of analyses. Moderate to high heritability estimates suggest that genetic improvement can be obtained by selection of these reproductive traits. The full-sib analysis for estimating heritability will be preferred since it is assumed that only additive genetic variance contributes to the covariance between family members.


2004 ◽  
Vol 84 (4) ◽  
pp. 589-597 ◽  
Author(s):  
D. H. Crews ◽  
Jr., M. Lowerison ◽  
N. Caron ◽  
R. A. Kemp

Genetic parameters for three growth and five carcass traits were estimated for Charolais using a combination of carcass progeny test, purebred field performance and pedigree data. Heritabilities and genetic and residual correlations were derived from variance components for birth weight (BWT, n = 54 221), 205-d weaning weight (WT205, n = 31 384), postweaning gain (PWG, n = 19 403), hot carcass weight (HCW, n = 6958), average subcutaneous fat thickness (FAT, n = 6866), longissimus muscle area (REA, n = 6863), marbling score (MAR, n = 6903) and estimated carcass lean yield percentage (PLY, n = 6852) with an animal model (n = 78 728) and restricted maximum likelihood. Breed of dam and contemporary group appropriate to each trait were included as fixed effects in the model, whereas random effects included direct genetic for all traits, maternal genetic for BWT and WT205, and maternal permanent environmental for WT205. Carcass traits were adjusted to a constant harvest age of 425 d. Heritability estimates of 0.53, 0.22, and 0.21 were obtained for direct components of BWT, WT205, and PWG, respectively, and maternal heritabilities were 0.16 and 0.10 for BWT and WT205, respectively. Direct × maternal genetic correlations for BWT (-0.49) and WT205 (-0.35) were negative. Heritabilities for HCW, FAT, REA, MAR, and PLY were 0.33, 0.39, 0.43, 0.34, and 0.46, respectively. Genetic correlations among direct effects for growth traits were moderately positive and generally uncorrelated with maternal effects across traits. Lean and fat deposition in the carcass generally had negative, unfavorable genetic correlations, although improvement in lean yield and marbling score may not be strongly antagonistic. Genetic correlations of direct and maternal components of growth traits with carcass traits suggested that selection for increased growth rate would not be antagonistic to improvement in carcass yield or meat quality. Key words: Carcass, Charolais, correlation, genetic parameters, growth


Author(s):  
Eser Kemal Gurcan ◽  
Dogan Narinc ◽  
Selcuk Kaplan

This study aimed to determine the phenotypic values of the slaughter and carcass traits in the flocks of quails obtained when a flock of parent quails were at 12, 16, and 20 weeks of age and to estimate the heritabilities and the genetic correlations for these traits. For this purpose, a total of 1,346 Japanese quails were slaughtered at 8 weeks of age, and their slaughter weights as well as carcass, breast, leg, and abdominal fat weights and ratios were determined. Differences in all traits were detected between female and male quails (P<0.05). The averages of many important traits, primarily slaughter weight, carcass weight, and breast weight, increased with the increase in the breeder age. On the contrary, the carcass yield decreased (P<0.05). There were no significant variations in the phenotypic and genetic variances for the slaughter and carcass traits in the flocks obtained when the breeder flock was at different ages. The heritabilities for slaughter weight, carcass weight, and abdominal fat weight were estimated to be moderate, and the genetic correlations among them were estimated to be positive and high. In conclusion, it is possible to state that positive results might be obtained by using the carcass ratio as the criterion for selection in quails. Besides, the breeder age was discovered to have had no significant effect on the genetic parameter estimations.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1425
Author(s):  
Masoumeh Naserkheil ◽  
Deuk-Hwan Lee ◽  
Hong-Sik Kong ◽  
Jiyeon Seong ◽  
Hossein Mehrban

Genetic parameters have a significant role in designing a breeding program and are required to evaluate economically important traits. The objective of this study was to estimate heritability and genetic correlation between yearling ultrasound measurements, such as backfat thickness (UBFT), eye muscle area (UEMA), intramuscular fat content (UIMF), and carcass traits, such as backfat thickness (BFT), carcass weight (CW), eye muscle area (EMA), marbling score (MS) at approximately 24 months of age, as well as yearling weight (YW) in Hanwoo bulls (15,796) and steers (5682). The (co) variance components were estimated using a multi-trait animal model. Moderate to high heritability estimates were obtained and were 0.42, 0.50, 0.56, and 0.59 for CW, EMA, BFT, and MS, respectively. Heritability estimates for yearling measurements of YW, UEMA, UBFT, and UIMF were 0.31, 0.32, 0.30, and 0.19, respectively. Favorable and strong genetic correlations were observed between UIMF and MS (0.78), UBFT and BFT (0.63), and UEMA and EMA (0.65). Moreover, the estimated genetic correlation between YW and CW was high (0.84) and relatively moderate between YW and EMA (0.43). These results suggest that genetic improvement can be achieved for carcass traits when using yearling ultrasound measurements as selection criteria in ongoing Hanwoo breeding programs.


2005 ◽  
Vol 48 (3) ◽  
pp. 261-269 ◽  
Author(s):  
H. Atil ◽  
A. S. Khattab ◽  
L. Badawy

Abstract. Birth and weaning weights of 556 Friesian calves by 41 sires out of 318 different dams over a 11 years period were obtained from a herd of Friesian in Sakha Experimental Farm, Ministry of Agriculture, Egypt were used. The records were analyzed by Multiple Trait Likelihood Method (MTDFREML) by using a repeatability animal model (BOLDMAN et al., 1995). Convergence was attained after 699 iterations. The fixed effects included in the model were season and year of calving, parity and sex and the random effects were direct and maternal genetic, permanent maternal environmental and error. Direct heritability estimates for birth weight (BW) and weaning weight (WW) are 0.28 and 0.13, respectively, while, maternal heritability estimates for the same traits are 0.14 and 0.06, respectively. Repeatability estimates are 0.75 and 0.15 for BW and WW, respectively. Phenotypic and genetic correlations are 0.89 and 0.80, respectively. Estimates of calve breeding values ranged from −3.12 to 4.11 kg for BW and ranged from −4.10 to 5.11 kg for WW. Sire breeding values ranged from −3.40 to 2.99 kg for BW and ranged from −2.50 to 4.47 kg for WW. Dam breeding values ranged from −6.80 to 5.54 kg for BW and ranged from -6.10 to 6.39 kg for WW.


2016 ◽  
Vol 29 (1) ◽  
pp. 216-221 ◽  
Author(s):  
CAMILA DA COSTA BARROS ◽  
RÚSBEL RAUL ASPILCUETA-BORQUIS ◽  
ANGELINA BOSSI FRAGA ◽  
HUMBERTO TONHATI

ABSTRACT: The objective of this study was to determine the genetic variation in milk production, milk components, and reproductive traits in dairy buffaloes. A total of 9,318 lactation records from 3,061 cows were used to estimate the heritability of milk yield (MY), fat percentage (%F), protein percentage (%P), lactation length (LL), calving interval (CI), and age at first calving (AFC), as well as genetic and phenotypic correlations between these traits. Covariance components were estimated by Bayesian inference in a multitrait animal model using the GIBBS2F90 program. Contemporary groups and number of milkings (1 or 2) were included as fixed effects, age of dam at calving (linear and quadratic effects) as a covariate, and additive genetic, permanent environmental, and residual effects as random effects. The heritability estimates (± standard deviation) were 0.24 ± 0.02, 0.34 ± 0.05, 0.40 ± 0.05, 0.09 ± 0.01, 0.05 ± 0.01, and 0.16 ± 0.04 for MY, %F, %P, LL, CI, and AFC, respectively. The genetic correlations between MY and %F, %P, LL, CI, and AFC were -0.29, -0.18, 0.66, 0.08, and 0.24, respectively. Milk production and milk components showed sufficient genetic variation to obtain genetic gains through selection. The genetic correlations between MY and milk components were negative, and thus, undesirable because efforts to increase MY may decrease milk quality. Reproductive traits had little genetic influence, indicating that improvement of management would be sufficient to obtain better performance.


2013 ◽  
Vol 25 (5) ◽  
pp. 775 ◽  
Author(s):  
M. E. Buzanskas ◽  
R. P. Savegnago ◽  
D. A. Grossi ◽  
G. C. Venturini ◽  
S. A. Queiroz ◽  
...  

Phenotypic data from female Canchim beef cattle were used to obtain estimates of genetic parameters for reproduction and growth traits using a linear animal mixed model. In addition, relationships among animal estimated breeding values (EBVs) for these traits were explored using principal component analysis. The traits studied in female Canchim cattle were age at first calving (AFC), age at second calving (ASC), calving interval (CI), and bodyweight at 420 days of age (BW420). The heritability estimates for AFC, ASC, CI and BW420 were 0.03 ± 0.01, 0.07 ± 0.01, 0.06 ± 0.02, and 0.24 ± 0.02, respectively. The genetic correlations for AFC with ASC, AFC with CI, AFC with BW420, ASC with CI, ASC with BW420, and CI with BW420 were 0.87 ± 0.07, 0.23 ± 0.02, –0.15 ± 0.01, 0.67 ± 0.13, –0.07 ± 0.13, and 0.02 ± 0.14, respectively. Standardised EBVs for AFC, ASC and CI exhibited a high association with the first principal component, whereas the standardised EBV for BW420 was closely associated with the second principal component. The heritability estimates for AFC, ASC and CI suggest that these traits would respond slowly to selection. However, selection response could be enhanced by constructing selection indices based on the principal components.


2013 ◽  
Vol 43 (12) ◽  
pp. 1145-1150 ◽  
Author(s):  
Andrew N. Callister

The genetic improvement of teak (Tectona grandis Linn. f.), a high value tropical hardwood, has been hindered by a paucity of genetic parameter estimates. In particular, an association between flowering age and forking height has been suggested but never before quantified. In this study, 3- to 6-year data from a cloned progeny test were used to estimate heritability and genetic correlations among stem size, forking, and flowering traits. Mean narrow-sense heritability estimates [Formula: see text] were 0.09–0.10, and mean broad-sense heritability estimates ([Formula: see text]) were 0.38–0.45 for stem size traits. There were no age trends in [Formula: see text] or [Formula: see text]. Age–age additive and nonadditive genetic correlations were strong and were not related to the time interval between measurements. Forking height and forking age were under weak to moderate genetic control. Flowering age was under substantially greater genetic control, with [Formula: see text] of 0.21 and [Formula: see text] of 0.46. Additive and nonadditive genetic correlations between forking height and flowering age were estimated to be 0.84 and 0.55, respectively. Improvement of forking height was calculated to be almost twice as efficient by indirect selection on late flowering. These results suggest that within-provenance selection for teak stem size need not be delayed beyond 3 years and that indirect selection on flowering age will improve forking height.


Sign in / Sign up

Export Citation Format

Share Document