Effects of trait definition on genetic parameter estimates and sire evaluation for clinical mastitis with threshold models

2004 ◽  
Vol 79 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Y. M. Chang ◽  
D. Gianola ◽  
B. Heringstad ◽  
G. Klemetsdal

AbstractClinical mastitis records on 36 178 first-lactation Norwegian dairy cattle (NRF) cows, daughters of 245 sires from 5286 herds, were analysed to study the impact of trait definition on estimates of genetic parameters and sire evaluations for clinical mastitis. The opportunity interval for infection, going from 30 days pre-calving to 300 days post partum, was divided into either 11 periods (each 30 days long); four periods ((-30, 0), (1, 30), (31, 120), (121, 300)); a single period (-30, 300) or defined as the interval currently used for sire evaluation in Norway (-15,120). Within each period, clinical mastitis was scored as 1 if it occurred at least once and 0 otherwise. Analysis was with Bayesian threshold models, assuming that mastitis (presence v. absence) was a different trait in each period. By use of multivariate or univariate normal link functions, unobserved liabilities to disease were modelled as a linear function of year of calving, age-season of calving, herd, sire of cow and residual effects. Estimates of heritability of liability to clinical mastitis ranged from 0-06 to 0-14, depending on the model and stage of lactation. In multi-period models, estimates of genetic correlations between periods were positive and ranged from 0-13 to 0-55. This suggests that clinical mastitis resistance is not the same trait in different periods of the first lactation, which is not captured by the single-interval models. The single-interval (-30, 300) model gave slightly smaller sire-specific posterior probabilities of clinical mastitis during the first lactation than the multi-period models. Furthermore, the interval used in current Norwegian sire evaluation understated the posterior probabilities of clinical mastitis, relative to the multi-period specifications. This led to some differences in sire rankings between the four models, although there was agreement between the four- and 11-period models. In conclusion, the multi-period models captured more genetic variation than the single-interval models, but the four-period model gave sire rankings that differed little from those obtained with an 11-period definition of clinical mastitis.

2008 ◽  
Vol 16 (2) ◽  
pp. 115 ◽  
Author(s):  
E. NEGUSSIE ◽  
I. STRANDÉN ◽  
E. MÄNTYSAARI

Clinical mastitis (CM) records from first-lactation Finnish Ayrshire were analysed by linear and threshold models to assess the effects trait definition on estimates of genetic parameters and sire evaluation. The studied CM traits were defined by dividing lactation into six lactation stages (risk periods) by days (d) after calving: CM1 (-7 to 150 d), CM2 (-30 to 30 d), CM3 (-30 to 150 d), CM4 (31 to 150 d), CM5 (150 to 300 d), CM6 (-30 to 300 d). In addition, two data sets were prepared to assess the effect of excluding (Data I) or including (Data II) records of culled cows on estimates of genetic parameters. Sire variances and heritabilities were larger using Data II. When data from longer intervals was used heritabilities of CM were slightly higher than shorter intervals indicating that longer intervals tend to obscure genetic variation between animals. Of all CM traits, heritability of liability to CM with threshold-liability model was highest for CM2 (h2=0.083) implying that most of the genetic information on CM is in early lactation. In sire evaluation, a multitrait index calculated by combining CM2, CM4 and CM5 had the highest correlation with all other univariate CM trait evaluations. This and the magnitude (less than 1.0) of genetic correlations between CM traits suggest that a multitrait model considering CM from the different risk periods would be appropriate for CM sire evaluation.;


2016 ◽  
Vol 29 (1) ◽  
pp. 216-221 ◽  
Author(s):  
CAMILA DA COSTA BARROS ◽  
RÚSBEL RAUL ASPILCUETA-BORQUIS ◽  
ANGELINA BOSSI FRAGA ◽  
HUMBERTO TONHATI

ABSTRACT: The objective of this study was to determine the genetic variation in milk production, milk components, and reproductive traits in dairy buffaloes. A total of 9,318 lactation records from 3,061 cows were used to estimate the heritability of milk yield (MY), fat percentage (%F), protein percentage (%P), lactation length (LL), calving interval (CI), and age at first calving (AFC), as well as genetic and phenotypic correlations between these traits. Covariance components were estimated by Bayesian inference in a multitrait animal model using the GIBBS2F90 program. Contemporary groups and number of milkings (1 or 2) were included as fixed effects, age of dam at calving (linear and quadratic effects) as a covariate, and additive genetic, permanent environmental, and residual effects as random effects. The heritability estimates (± standard deviation) were 0.24 ± 0.02, 0.34 ± 0.05, 0.40 ± 0.05, 0.09 ± 0.01, 0.05 ± 0.01, and 0.16 ± 0.04 for MY, %F, %P, LL, CI, and AFC, respectively. The genetic correlations between MY and %F, %P, LL, CI, and AFC were -0.29, -0.18, 0.66, 0.08, and 0.24, respectively. Milk production and milk components showed sufficient genetic variation to obtain genetic gains through selection. The genetic correlations between MY and milk components were negative, and thus, undesirable because efforts to increase MY may decrease milk quality. Reproductive traits had little genetic influence, indicating that improvement of management would be sufficient to obtain better performance.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.


2021 ◽  
Vol 38 (1) ◽  
pp. 14-22
Author(s):  
M. Orunmuyi ◽  
I. A. Adeyinka ◽  
O.O Oni

A study was conducted to estimate the genetic parameters of fertility and hatchability in two strains of Rhode Island Red (RIR) Chickens denoted as Strain A and Strain B respectively using the full-sib (sire +dam variance) and maternal half-sib (dam variance) components. The birds were obtained from the selected populations of RIR Chickens kept at the poultry breeding programme of National Animal Production Research Institute, Shika, Zaria, Nigeria. Settable eggs were collected from mating 28 cocks to 252 hens in a ratio of 1cock:9 hens from each strain. Eggs were pedigreed according to sire and dam. Results showed that values obtained for number of egg set (EGGSET), number of fertile eggs (NFERT), number of hatched chicks (NHATCH), percentage of chicks hatched from total eggs set (PHATCH) and percentage of chicks hatched from fertile eggs (PHATCHBL) were all higher in strain A than strain B. Heritability estimates obtained from the full-sib and maternal half-sib analysis ranged from medium to high for the two strains (0.24-0.96). The maternal half sib estimates were higher (0.40-0.96) than the estimates obtained from full sibs (0.24- 0.48). Genetic and phenotypic correlations obtained for both strains were positive and similar regardless of method of estimation. Genetic correlations between EGGSET and PFERT were low in strain A using both full-sib and maternal half-sib analyses (0.09-0.14). Phenotypic correlations between EGGSET and PFERT, PHATCH and PHATCHBL were also low in both strains and regardless of method of analyses. Moderate to high heritability estimates suggest that genetic improvement can be obtained by selection of these reproductive traits. The full-sib analysis for estimating heritability will be preferred since it is assumed that only additive genetic variance contributes to the covariance between family members.


1977 ◽  
Vol 57 (3) ◽  
pp. 383-388 ◽  
Author(s):  
A. K. W. TONG ◽  
B. W. KENNEDY ◽  
J. E. MOXLEY

A total of 13,561 Holstein 305-day lactation records from 779 Quebec and Maritime herds enrolled on the Dairy Herd Analysis Service were used to evaluate the importance of sire × herd interactions for milk yield and composition traits. Sire × herd interaction accounted for 4.1, 1.1, 0.3, 2.6 and 5.6% of the total variation of milk, fat and protein yield and fat and protein percent, respectively. Genetic parameter estimates obtained under two different models, a full model that accounted for sire × herd interaction and a reduced model that ignored it, were examined. Heritabilities of milk, fat and protein yield and fat and protein percent were, respectively: for the full model, 0.36, 0.47, 0.45, 0.59 and 0.31 and for the reduced model, 0.49, 0.50, 0.46, 0.66 and 0.46. Phenotypic correlations between the traits were not appreciably different when estimated under the full and reduced models. Genetic correlations between the yield traits were also similar when estimated under the full and reduced models, but genetic correlations between yield and percentage traits were more stongly positive, or less negative, when sire × herd interaction was accounted for. The genetic correlation between fat and protein percent was larger under the reduced model than under the full model.


1994 ◽  
Vol 24 (7) ◽  
pp. 1480-1486 ◽  
Author(s):  
R.J. Arnold ◽  
J.B. Jett ◽  
S.E. McKeand

Open-pollinated progeny trials of Fraser fir (Abiesfraseri (Pursh) Poir.) assessed at 8 years provided genetic parameter estimates for growth, Christmas tree quality traits, and wholesale value at harvest age. Significant variation was found between and within nine different seed sources. Estimated individual tree heritabilities of important traits ranged from a low of 0.13 for USDA Christmas tree grade to a moderate value of 0.33 for crown diameter. Heritabilities within the better performing seed sources tended to be higher. Of the two traits that determine wholesale value, USDA grade and height class, the latter proved to have the greater influence, both phenotypically and genetically. Genetic correlations of early age height growth with 8-year total height, height class, USDA Christmas tree grade, and individual tree wholesale value proved favorable and strong (range of 0.57–0.96). In combination with moderate heritabilities for early growth traits, such correlations provide potential for effective early age selections in Fraser fir Christmas trees.


Author(s):  
Eser Kemal Gurcan ◽  
Dogan Narinc ◽  
Selcuk Kaplan

This study aimed to determine the phenotypic values of the slaughter and carcass traits in the flocks of quails obtained when a flock of parent quails were at 12, 16, and 20 weeks of age and to estimate the heritabilities and the genetic correlations for these traits. For this purpose, a total of 1,346 Japanese quails were slaughtered at 8 weeks of age, and their slaughter weights as well as carcass, breast, leg, and abdominal fat weights and ratios were determined. Differences in all traits were detected between female and male quails (P<0.05). The averages of many important traits, primarily slaughter weight, carcass weight, and breast weight, increased with the increase in the breeder age. On the contrary, the carcass yield decreased (P<0.05). There were no significant variations in the phenotypic and genetic variances for the slaughter and carcass traits in the flocks obtained when the breeder flock was at different ages. The heritabilities for slaughter weight, carcass weight, and abdominal fat weight were estimated to be moderate, and the genetic correlations among them were estimated to be positive and high. In conclusion, it is possible to state that positive results might be obtained by using the carcass ratio as the criterion for selection in quails. Besides, the breeder age was discovered to have had no significant effect on the genetic parameter estimations.


2021 ◽  
Vol 20 (1) ◽  
pp. 49-57
Author(s):  
Sang V. Nguyen

Genetic parameters comprising heritability, genetic correlation and genotype by environment interaction (GxE) for growth survival rate and body colour at harvest were estimated on the 5th selective generation of red tilapia grown in two environments, freshwater and brackishwater ponds. A total of 116 full-half-sib families was produced as well as 4,432 and 3,811 tagged individuals were tested in freshwater and brackishwater ponds, respectively. Genetic parameters were estimated by ASReml 4.1 software. The heritability for body weight and survival rate was high while medium heritability for body colour in freshwater was observed. The heritability for those traits of red tilapia in brackishwater. Together with the figures in earlier publication on previous generations (G1 to G4) in the same selective population, the expected medium to high response acquires if selection is done for each trait. Genetic correlations among harvest body weight, survival rate and body colour are insignificantly different and ranging from -0.25 to 0.37 (P > 0.05). These results implied that selection on one trait do not influence on responses of the other traits. GxE interaction for body weight and body colour between two tested environments is mostly negligible with genetic correlations ranging from 0.63 - 0.80 while it is important for survival trait (rg = -0.17 ± 0.40).


2000 ◽  
Vol 2000 ◽  
pp. 112-112 ◽  
Author(s):  
J.E. Pryce ◽  
R.F. Veerkamp

Getting reliable genetic parameter estimates for dry matter intake is difficult because recording it is expensive, hence it is tempting to combine data from research herds. However, there are large differences in feeding and management systems, which causes differences in means across herds. Furthermore, variances or heritabilities may differ and genetic correlations may be less than one between herds. This is one of the reasons why it is important to investigate effects of genotype by environment interaction (GxE). Another reason is that it is important to understand how high genetic merit cows perform in different feeding systems. The objective of this study was to estimate the effect of GxE for three feeding systems at two research herds belonging to ID-Lelystad (ID) and to SAC/University of Edinburgh (Langhill).


Sign in / Sign up

Export Citation Format

Share Document