scholarly journals Vegetation indices in the prediction of biomass and grain yield of white oat under irrigation levels

2018 ◽  
Vol 48 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Anderson Prates Coelho ◽  
David Luciano Rosalen ◽  
Rogério Teixeira de Faria

ABSTRACT Vegetation indices are widely used to indicate the nutritional status of crops, as well as to estimate their harvest yield. However, their accuracy is influenced by the phenological stage of evaluation and the index used. The present study aimed to evaluate the accuracy of the Normalized Difference Vegetation Index (NDVI) and Inverse Ratio Vegetation Index (IRVI) in the prediction of grain yield and biomass of white oat cultivated under irrigation levels, besides indicating the best phenological stage for evaluation. The irrigation levels consisted of 11 %, 31 %, 60 %, 87 % and 100 % of the maximum evapotranspiration, with four replicates. The mean values for NDVI and IRVI were determined using an active terrestrial sensor, at four phenological stages (4, 8, 10 and 10.5.4). The white oat grain yield and biomass may be estimated with a high precision using the NDVI and IRVI. The NDVI was more accurate than the IRVI. The grain yield estimate was more accurate from the flag leaf sheath appearance stage (10), whereas, for the biomass, the best estimate was for the kernel watery ripe stage (10.5.4).

Author(s):  
Julius Adewopo ◽  
Helen Peter ◽  
Alpha Kamara ◽  
Ibrahim Mohammed ◽  
Bernard Vanlauwe ◽  
...  

Rapid assessment of maize yields in smallholder farming system is important to understand its spatial and temporal variability and for timely agronomic decision-support. Imageries acquired with unmanned air vehicles (UAV) offer opportunity to assess agronomic variables at field scale, however, it is not clear if this can be translated into reliable yield assessment on smallholder farms where field conditions, maize genotypes, and management practices vary within short distances. This study was conducted to assess the predictability of maize grain yield using UAV-derived vegetation indices (VI), with(out) biophysical variables, in smallholder farms. High-resolution images were acquired with UAV-borne multispectral sensor at 4 and 8 weeks after sowing (WAS) on 31 farmers’ managed fields (FMFs) and 12 nearby Nutrient Omission Trials (NOT), all distributed across 5 locations within the core maize region of Nigeria. The NOTs included non-fertilized and fertilized plots (with and without micronutrients), sown with open pollinated or hybrid maize genotypes. Acquired multispectral images were post-processed into several three (s) vegetation indices (VIs), normalized difference vegetation index (NDVI), normalized difference red-edge (NDRE), green-normalized difference vegetation index (GNDVI). Biophysical variables, plant height (Ht) and percent canopy cover (CC), were measured with the georeferenced plot locations recorded. In the NOTs, the nutrient status, not genotype, influenced the grain yield variability and outcome. The maximum grain yield observed in NOTs was 9.3 tha-1, compared to 5.4 tha-1 in FMF. Without accounting for between- and within-field variations, there was no relationship between UAV-derived VIs and grain yield at 4WAS (r<0.02, P>0.1), but significant correlations were observed at 8WAS (r≤0.3; p<0.001). Ht was positively correlated with grain yield at 4WAS (r=0.5, R2=0.25, p<0.001), and more strongly at 8WAS (r=0.7, R2=0.55, p<0.001), while relationship between CC and yield was only significant at 8WAS. By accounting for within- and between-field variations in NOTs and FMF (separately) through linear mixed-effects modeling, predictability of grain yield from UAV-derived VIs was generally (R2≤0.24), however, the inclusion of ground-measured biophysical variable (mainly Ht) improved the explained yield variability (R2 ≥0.62, RMSEP≤0.35) in NOTs but not in FMF. We conclude that yield prediction with UAV-acquired imageries (before harvest) is more reliable under controlled experimental conditions (NOTs), compared to actual farmer-managed fields where various confounding agronomic factors can amplify noise-signal ratio.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1842
Author(s):  
Ewa Panek ◽  
Dariusz Gozdowski ◽  
Michał Stępień ◽  
Stanisław Samborski ◽  
Dominik Ruciński ◽  
...  

The aims of this study were to: (i) evaluate the relationships between vegetation indices (VIs) derived from Sentinel-2 imagery and grain yield (GY) and the number of spikes per square meter (SN) of winter wheat and triticale; (ii) determine the dates and plant growth stages when the above relationships were the strongest at individual field scale, thus allowing for accurate yield prediction. Observations of GY and SN were performed at harvest on six fields (three locations in two seasons: 2017 and 2018) in three regions of Poland, i.e., northeastern (A—Brożówka), central (B—Zdziechów) and southeastern Poland (C—Kryłów). Vegetation indices (Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), modified SAVI (mSAVI), modified SAVI 2 (mSAVI2), Infrared Percentage Vegetation Index (IPVI), Global Environmental Monitoring Index (GEMI), and Ratio Vegetation Index (RVI)) calculated for sampling points from mid-March until mid-July, covering within-field soil and topographical variability, were included in the analysis. Depending on the location, the highest correlation coefficients (of about 0.6–0.9) for most of VIs with GY and SN were obtained about 4–6 weeks before harvest (from the beginning of shooting to milk maturity). Therefore, satellite-derived VIs are useful for the prediction of within-field cereal GY as well as SN variability. Information on GY, predicted together with the results for soil nutrient availability, is the basis for the formulation of variable fertilize rates in precision agriculture. All examined VIs were similarly correlated with GY and SN via the commonly used NDVI. The increase in NDVI by 0.1 unit was related to an average increase in GY by about 2 t ha−1.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 340
Author(s):  
Ewa Panek ◽  
Dariusz Gozdowski

In this study, the relationships between normalized difference vegetation index (NDVI) obtained based on MODIS satellite data and grain yield of all cereals, wheat and barley at a country level were analyzed. The analysis was performed by using data from 2010–2018 for 20 European countries, where percentage of cereals is high (at least 35% of the arable land). The analysis was performed for each country separately and for all of the collected data together. The relationships between NDVI and cumulative NDVI (cNDVI) were analyzed by using linear regression. Relationships between NDVI in early spring and grain yield of cereals were very strong for Croatia, Czechia, Germany, Hungary, Latvia, Lithuania, Poland and Slovakia. This means that the yield prediction for these countries can be as far back as 4 months before the harvest. The increase of NDVI in early spring was related to the increase of grain yield by about 0.5–1.6 t/ha. The cumulative of averaged NDVI gives more stable prediction of grain yield per season. For France and Belgium, the relationships between NDVI and grain yield were very weak.


2012 ◽  
Vol 131 (6) ◽  
pp. 716-721 ◽  
Author(s):  
Shahnoza Hazratkulova ◽  
Ram C. Sharma ◽  
Safar Alikulov ◽  
Sarvar Islomov ◽  
Tulkin Yuldashev ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 1144
Author(s):  
Mahendra Bhandari ◽  
Shannon Baker ◽  
Jackie C. Rudd ◽  
Amir M. H. Ibrahim ◽  
Anjin Chang ◽  
...  

Drought significantly limits wheat productivity across the temporal and spatial domains. Unmanned Aerial Systems (UAS) has become an indispensable tool to collect refined spatial and high temporal resolution imagery data. A 2-year field study was conducted in 2018 and 2019 to determine the temporal effects of drought on canopy growth of winter wheat. Weekly UAS data were collected using red, green, and blue (RGB) and multispectral (MS) sensors over a yield trial consisting of 22 winter wheat cultivars in both irrigated and dryland environments. Raw-images were processed to compute canopy features such as canopy cover (CC) and canopy height (CH), and vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), and Normalized Difference Red-edge Index (NDRE). The drought was more severe in 2018 than in 2019 and the effects of growth differences across years and irrigation levels were visible in the UAS measurements. CC, CH, and VIs, measured during grain filling, were positively correlated with grain yield (r = 0.4–0.7, p < 0.05) in the dryland in both years. Yield was positively correlated with VIs in 2018 (r = 0.45–0.55, p < 0.05) in the irrigated environment, but the correlations were non-significant in 2019 (r = 0.1 to −0.4), except for CH. The study shows that high-throughput UAS data can be used to monitor the drought effects on wheat growth and productivity across the temporal and spatial domains.


2018 ◽  
Vol 37 (3) ◽  
pp. 219-236 ◽  
Author(s):  
Khalid Mahmood ◽  
Zia Ul-Haq ◽  
Fiza Faizi ◽  
Syeda A. Batol

This study compares the suitability of different satellite-based vegetation indices (VIs) for environmental hazard assessment of municipal solid waste (MSW) open dumps. The compared VIs, as bio-indicators of vegetation health, are normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI) that have been subject to spatio-temporal analysis. The comparison has been made based on three criteria: one is the exponential moving average (EMA) bias, second is the ease in visually finding the distance of VI curve flattening, and third is the radius of biohazardous zone in relation to the waste heap dumped at them. NDVI has been found to work well when MSW dumps are surrounded by continuous and dense vegetation, otherwise, MSAVI is a better option due to its ability for adjusting soil signals. The hierarchy of the goodness for least EMA bias is MSAVI> SAVI> NDVI with average bias values of 101 m, 203 m, and 270 m, respectively. Estimations using NDVI have been found unable to satisfy the direct relationship between waste heap and hazardous zone size and have given a false exaggeration of 374 m for relatively smaller dump as compared to the bigger one. The same false exaggeration for SAVI and MSAVI is measured to be 86 m and -14 m, respectively. So MSAVI is the only VI that has shown the true relation of waste heap and hazardous zone size. The best visualization of distance-dependent vegetation health away from the dumps is also provided by MSAVI.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


2012 ◽  
Vol 84 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Fábio M. Breunig ◽  
Lênio S. Galvão ◽  
Antônio R. Formaggio ◽  
José C.N. Epiphanio

Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.


Sign in / Sign up

Export Citation Format

Share Document