scholarly journals In vitro morphogenesis of Physalis ixocarpa Brot ex. Horm

2021 ◽  
Vol 51 ◽  
Author(s):  
Domitzel Zagal Alvarado ◽  
Andressa Priscila Piancó Santos Lima ◽  
José Raniere Ferreira de Santana ◽  
Alone Lima-Brito

ABSTRACT Physalis ixocarpa Brot. ex Horm. is considered the most economically important species of the genus. Tissue culture is pointed out as a strategy for its propagation, but researches indicate that in vitro responses are genotype-dependent. This study aimed to evaluate the in vitro morphogenesis of the P. ixocarpa green and purple varieties, in view of the massive propagation of the species. The morphogenic capacity of the explants cotyledonary node, hypocotyl and cotyledon was evaluated in Murashige & Skoog medium supplemented with benzylaminopurine - BAP (0.00, 2.5, 5.0, 7.5 or 10.0 μM) and naphthaleneacetic acid - NAA (0.00 or 2.5 μM), using a completely randomized experimental design, in a 3 x 5 x 2 factorial scheme, with 30 treatments for each variety. The number of shoots per direct and indirect organogenesis and the percentage of explants with callus were analyzed. The in vitro morphogenetic expression of P. ixocarpa is influenced by the type of explant and by the plant regulators BAP and NAA. The cotyledonary node explant is efficient for the production of shoots via direct organogenesis in the two varieties studied.

2011 ◽  
Vol 35 (3) ◽  
pp. 502-510 ◽  
Author(s):  
Alone Lima-Brito ◽  
Sheila Vitória Resende ◽  
Carolina Oliveira de Cerqueira Lima ◽  
Bruno Matos Alvim ◽  
Claudia Elena Carneiro ◽  
...  

Syngonanthus mucugensis Giul. subsp. mucugensis is an herbaceous plant with significant economic value in the ornamental dry flower business. The restricted occurrence of the municipality Mucugê-BA, Brazil, exclusively associated with extractive exploitation, has considered this species as endangered. The objective of this work was to evaluate the organogenic potential of three different types of S. mucugensis subsp. mucugensis explants to promote the development of an alternative method to the propagation of the genetic resources of this important plant. The morphogenetic capacities of the leaf, stem and root this species was tested using Murashige and Skoog culture medium at half salt concentration and different concentrations of growth of regulators benzylaminopurine - BAP (0.00; 2.22 and 4.44 µM), and naphthalene acetic acid - NAA (0.00; 1.34 and 2.68 µM). The morphoanatomic events that lead to formation of shoots were described. Stems proved to be the best source of explants, showing 58.75% regeneration of shoot by direct organogenesis in the absence of growth regulators, and 32.18 and 47.55% of shoot regeneration by indirect organogenesis in the presence of 2.22 and 4.44 µM BAP, respectively. As for leaves, there was callus formation, but without regenerating shoots. Morphogenesis was not observed when roots were used as explants. The histological analyses showed that shoot regeneration in S. mucugensis subsp. mucugensis occurred both indirectly, by unorganized tissue differentiation, and directly through returning to merismatic activity in differentiated mature cells and preexisting bud proliferation.


2022 ◽  
Author(s):  
Leticia da Silva Araújo ◽  
Virginia Silva Carvalho ◽  
Andressa Leal Generoso ◽  
Josefa Grasiela Silva Santana ◽  
Glaziele Campbell ◽  
...  

Abstract Passiflora setacea DC (Passifloraceae) is considered an important species in the genetic breeding of passion fruit. However, its use is limited due to low seed germination. This paper aimed to study the effect of cytokinins 6-benzyladenine (BA) and thidiazuron (TDZ) on the in vitro morphogenesis of P. setacea using three explants: hypocotyl, nodal segment, and root segment. The explants were induced to morphogenesis in MS medium modified and with different concentrations of BA and TDZ. After 55 days, the percentage of calluses and shoots were evaluated, and anatomical characterization was performed. The three explants used in the in vitro morphogenesis of P. setacea showed callus and shoots formation, but in greater numbers in the nodal segments treated with BA. TDZ isolated affected equal to or less than BA on callus and shoots formation for the three explants. Direct and indirect organogenesis was observed in the three types of explants. From the results obtained for plant regeneration via in vitro morphogenesis of P. setacea, it is recommended to use a nodal segment in MSM medium and supplemented with 2.22 μmol L-1 of BA.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1066C-1066
Author(s):  
Manijeh Mohammadi-Dehcheshmeh ◽  
Ahmad Khalighi ◽  
Esmaeil Ebrahimie ◽  
Manoochehr Sardari ◽  
Rohangiz Naderi

Wild populations of Fritillaria sp. have dramatically decreased in Iran because of pest overflow and continual grazing. Previous studies have shown that Fritillaria cannot rapidly and efficiently propagate by traditional methods. In vitro tissue culture techniques have shown high potential for micropropagation of endangered plants. The use of bulb-scale pieces for tissue culture can result in the destruction of the endangered parent plant. Fritillaria is a heterozygous plant in which the genetic content of each embryo is different from others, even on the same plant. In this study, mature embryos of F. imperialis and F. persica were used as explant for the first time. Embryos were extracted from seeds and cultured on B5 medium supplemented with various combinations of BAP (0, 0.1, 1 mg/L), NAA (0, 0.4, 4 mg/L), and IAA (0, 0.4, 4 mg/L). Embryo explant showed low genotype dependency between different heterogenous and heterozygote populations of both F. imperialis and F. persica. The best response of bulblet regeneration in both F. imperialis and F. persica was obtained from 1 mg/L BAP + 0.4 mg/L NAA+4 mg/L IAA and direct organogenesis pathway, with 15 bulblets per explant for F. imperialia and 20 for F. persica. Because of the large number of embryos in a plant and their different genetic contents, established in vitro propagation by using embryo explant in this study can provide broad genetic resources and variations. As explained above, in vitro protocols can play a major role in rescuing F. imperialis and F. persica from extinction.


2021 ◽  
Author(s):  
Gareema Pandey ◽  
Arpan Modi ◽  
Shikha Shah ◽  
Ghanshyam Patil ◽  
Subhash Narayanan

Abstract Indian sandalwood (Santalum album L.) is an expensive wood that requires reproducible method for mass propagation to ensure consistent production and sustainable use of sandalwood. For mass propagation of sandalwood, plant organogenesis requires different combinations of the tissue culture medium. The media is composed of exogenous phytohormones which decides the explant's morphological stages such as shooting or rooting induction. Early prediction of morphological stage from explant can potentially help in selecting the exogenous phytohormones combinations thereby saving time and resources for mass sandalwood propogation. An efficient protocol for the direct and indirect organogenesis (up to shooting development phase) of sandalwood were developed using Woody Plant Media (WPM). WPM supplemented with various concentrations of 6-Bezylaminopurine (BAP) and 1-Naphthaleneacetic acid (NAA) were tested for direct organogenesis, while different treatments consisting of various levels of 2,4-dichlorophenoxyacetic acid (2,4-D), NAA, BAP, Adenine sulphate (ADS), glycine and potassium nitrate were tested for indirect organogenesis. Three stages of leaf development were selected viz., the leaf just after inoculation in WPM media, initial stage of callus formation from leaf and shoot formation for expression pattern analysis. The targeted genes were Alternative oxidase (ao), Late embryogenesis abundant (lea), Cytochrome P450 (cyt-p450), ABC transporter (abct), and Serine-threonine phosphatase (stp) which are associated with in vitro organogenesis. The expression patterns were evaluated to identify a transcription marker. During the initial stages of organogenesis, ao, cyt-p450 and abct showed no/little change in expression in the direct pathway but up-regulation of ao and abct and downregulation of cyt-p450 were observed in the indirect pathway. Expression of lea was increased up to 70-fold during direct and dropped to half during indirect organogenesis.


2019 ◽  
Vol 49 ◽  
Author(s):  
Lilian Marcia Santana Mascarenhas ◽  
José Raniere Ferreira de Santana ◽  
Alone Lima Brito

ABSTRACT Physalis peruviana L. (Solanaceae) is an herbaceous fruit-bearing species that has been gaining market acceptance due to its nutritional and medicinal potential. The main limitations to its cultivation are the short reproductive cycle, the susceptibility of the fruits to pests and the lack of information about the crop management. Hence, studies are necessary to develop strategies for its propagation. This study aimed to evaluate the effects of 6-benzylaminopurine (BAP) and explants on the morphogenetic potential of P. peruviana, as well as to establish a protocol for the micropropagation of the species via direct organogenesis. To evaluate the morphogenesis, cotyledonary node, cotyledon, leaf, epicotyl, hypocotyl and root explants were inoculated in Murashige & Skoog culture medium with half the normal concentration of salts and supplemented with cytokinin BAP (0.00 µM, 2.22 µM, 4.44 µM, 6.66 µM or 8.88 µM), plus 30 g L-1 of sucrose and 7 g L-1 of agar. Aiming at a direct production of shoots, the cotyledonary node explant was submitted to 0.00 µM, 2.22 µM, 4.44 µM, 6.66 µM, 8.88 µM, 13.32 µM, 17.76 µM or 22.20 µM of BAP. The obtained shoots were tested regarding their rooting potential in media with and without the addition of activated charcoal and then were transferred for acclimatation. The cotyledonary node and leaf explants were the most efficient sources for the regeneration of shoots via direct and indirect organogenesis, respectively. The most significant results for direct shoot production were obtained with 12.50 µM of BAP. These shoots were successfully rooted in vitro in medium without activated charcoal, and the microplants acclimated in vegetable earth attained 100 % of survival after 90 days of acclimatation.


2016 ◽  
Vol 63 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Ayesh Gaur ◽  
Pankaj Kumar ◽  
Ajay Kumar Thakur ◽  
Dinesh Kumar Srivastava

Genus Populus comprises about 25–35 species of deciduous flowering plants in the family Salicaceae which are widely distributed in temperate climates of the Northern Hemisphere. Populus species are important resources in certain branches of industry and have a special role for the scientific study of biological and agricultural systems. The poplar is known for its remarkable significance among the commercially propagated tree species such as teak, eucalyptus, wild cherry, red wood, and radiata pine. In vitro regeneration refers to growing and multiplications of cells, tissues and organs on defined liquid/solid media under aseptic and controlled environments. In vitro clonal propagation of forest trees, due to the high multiplication rate, is an attractive alternative for rapid propagation of elite genotypes of those species that could not easily be propagated through conventional methods. Owing to their widespread uses at the industrial level and for meeting the ever-increasing global demand for biomass production and wood industry, tissue culture techniques can be exploited for rapid cloning and large-scale production of planting material of various poplar species. Recent progress in the field of plant tissue culture determined this area to be one of the most dynamic and promising for experimental biology. Much work has been carried out on in vitro plant regeneration studies in Populus spp. including direct organogenesis, indirect organogenesis and somatic embryogenesis. These reviews provide an insight for in vitro plant regeneration studies in poplar species and their potential in its improvement.


2015 ◽  
Vol 77 (24) ◽  
Author(s):  
Siti Suhaila A. Rahman ◽  
Norwati Muhammad ◽  
Nor Hasnida Hassan ◽  
Haliza Ismail ◽  
Nazirah Abdullah ◽  
...  

Neolamarckia cadamba (kelempayan) is a multipurpose and fast growing timber species. The tree is grown for timber, paper-making and as ornamental plant. It is reported that its barks and leaves possesed medicinal values and its flowers are used in perfumes. The species is also known to be suitable for plywood, packing case, toys and short-fibred pulp. Therefore, mass production of high quality planting material of N. cadamba is important to support plantation program of this species. Here we presented mass production of N. cadamba through tissue culture techniques. Nodal segments derived from in vitro germinated seeds were used and induced direct organogenesis to produce shoots and roots using MS media (1962) and plant growth regulators (BAP and IBA) that are relatively cheaper than previously used methods. The tissue culture technique of N. cadamba developed may help in ensuring supply of planting materials that are feasible for commercial plantation purposes.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 178 ◽  
Author(s):  
Sabbadini ◽  
Ricci ◽  
Limera ◽  
Baldoni ◽  
Capriotti ◽  
...  

Prunus spp. is one of the most recalcitrant fruit tree species in terms of in vitro regeneration and transformation, mostly when mature tissues are used as explants. The present study describes the in vitro regeneration via indirect organogenesis, and Agrobacterium tumefaciens-mediated transformation of the peach rootstock Hansen 536 (Prunus persica × Prunus amygdalus) through the use of meristematic bulks (MBs) as starting explants. Efficient adventitious shoot regeneration was obtained when Hansen 536 MBs were cultured on an optimized medium consisting of modified McCown Woody Plant medium (WPM) enriched with 4.4 M 6-Benzyladenine (BA), 0.1 M 1-Naphthaleneacetic acid (NAA) and 6.0 g L−1 plant agar S1000 (B&V). MB slices were used later as starting explants for Agrobacterium-mediated transformation to introduce an RNAi construct “ihp35S-PPV194” against PPV virus. Transgenic events were identified by both green fluorescent protein (GFP) screening and kanamycin selection at different concentrations (0, 17 or 42 M). GFP-fluorescent proliferating callus lines were selected and confirmed to stably express the ihp35S-PPV194::eGFP gene construct by molecular analysis. Although shoot regeneration from these transgenic calli has not been obtained yet, this represents one of the few examples of successful attempts in peach genetic transformation from somatic tissues, and also serves as a useful in vitro system for future gene functional analysis in peach.


2021 ◽  
Vol 4 (2) ◽  
pp. 70-77
Author(s):  
Eliane Lima de = Aquino ◽  
◽  
Tarcísio Rangel do Couto ◽  
João Sebastião de Paula Araújo ◽  
◽  
...  

The objetive of this study was to evaluate the effects of adding two types of banana pulp, combined with varying concentrations of sacarose on the growth of Cattleya sp. plantlets. Hybrid LCTV-01 seedlings (Cattleya labiata rubra x Cattleya labiata semi alba) made to germinate in vitro were inoculated in an MS culture medium with half the concentration of nutrients and supplemented with 60 g.L-1 'maçã' or 'terra' banana pulp in addition to different concentrations of sacarose (10, 20 and 30 g.L-1. The entirely randomized experimental design was chosen, implemented in seven treatments, ten repetitions and eight seedlings per repetition. After 160 days of in vitro cultivation, variables of fresh weight, number of leaves, number of roots and length of the longest root were evaluated. It was found that the addition of banana pulp of any of the analyzed cultivars promoted better seedling growth. Additionally, the 20 g.L-1 sacarose concentration yielded better results for the analyzed variables.


Sign in / Sign up

Export Citation Format

Share Document