scholarly journals Antibacterial activity of polyvinyl alcohol (PVA)/ε-polylysine packaging films and the effect on longan fruit

2020 ◽  
Vol 40 (4) ◽  
pp. 838-843 ◽  
Author(s):  
Yana LI ◽  
Yuwen WANG ◽  
Juying LI
2021 ◽  
pp. 103156
Author(s):  
Dure N. Iqbal ◽  
Syed Ehtisham-ul-Haque ◽  
Sundas Ahmad ◽  
Khadija Arif ◽  
Erum Akbar Hussain ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3109 ◽  
Author(s):  
Andres Bernal-Ballen ◽  
Jorge Lopez-Garcia ◽  
Martha-Andrea Merchan-Merchan ◽  
Marian Lehocky

Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.


2020 ◽  
Vol 37 (4) ◽  
pp. 2000006 ◽  
Author(s):  
Khaled M. Amin ◽  
Abir M. Partila ◽  
Hassan A. Abd El‐Rehim ◽  
Noha M. Deghiedy

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 503 ◽  
Author(s):  
Lisha Ai ◽  
Yejing Wang ◽  
Gang Tao ◽  
Ping Zhao ◽  
Ahmad Umar ◽  
...  

Silk sericin (SS) is a type of natural macromolecular protein with excellent hydrophilicity, biocompatibility and biodegradability, but also has very poor mechanical properties. To develop sericin-based wound dressings, we utilized polyvinyl alcohol (PVA) to reinforce the mechanical property of sericin by blending PVA and sericin, then modified zinc oxide nanoparticles (ZnO NPs) on SS/PVA film with the assistance of polydopamine (PDA) to endow SS/PVA film with antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy and X-ray powder diffraction demonstrated ZnO NPs were well grafted on PDA-SS/PVA film. Fourier transform infrared spectra suggested PDA coating and ZnONPs modification did not alter the structure of sericin and PVA. Water contact angle and swelling tests indicated the excellent hydrophilicity and swellability of ZnO NPs-PDA-SS/PVA composite film. Mass loss analysis showed ZnO NPs-PDA-SS/PVA film had excellent stability. The mechanical performance test suggested the improved tensile strength and elongation at break could meet the requirement of ZnO NPs-PDA-SS/PVA film in biomaterial applications. The antibacterial assay suggested the prepared ZnO NPs-PDA-SS/PVA composite film had a degree of antimicrobial activity against Escherichia coli and Staphylococcus aureus. The excellent hydrophilicity, swellability, stability, mechanical property and antibacterial activity greatly promote the possibility of ZnO NPs-PDA-SS/PVA composite film in antibacterial biomaterials application.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Tan Dat Nguyen ◽  
Thanh Truc Nguyen ◽  
Khanh Loan Ly ◽  
Anh Hien Tran ◽  
Thi Thanh Ngoc Nguyen ◽  
...  

Silver nanoparticles have attracted great interests widely in medicine due to its great characteristics of antibacterial activity. In this research, the antibacterial activity and biocompatibility of a topical gel synthesized from polyvinyl alcohol, chitosan, and silver nanoparticles were studied. Hydrogels with different concentrations of silver nanoparticles (15 ppm, 30 ppm, and 60 ppm) were evaluated to compare their antibacterial activity, nanoparticles’ sizes, and in vivo behaviors. The resulted silver nanoparticles in the hydrogel were characterized by TEM showing the nanoparticles’ sizes less than 22 nm. The in vitro results prove that the antibacterial effects of all of the samples are satisfied. However, the in vivo results demonstrate the significant difference among different hydrogels in wound healing, where hydrogel with 30 ppm shows the best healing rate.


Sign in / Sign up

Export Citation Format

Share Document