scholarly journals Bacteriocin-like activity of oral Fusobacterium nucleatum isolated from human and non-human primates

1999 ◽  
Vol 30 (4) ◽  
pp. 324-346 ◽  
Author(s):  
Elerson Gaetti-Jardim Júnior ◽  
Mario Julio Avila-Campos

Fusobacterium nucleatum is indigenous of the human oral cavity and has been involved in different infectious processes. The production of bacteriocin-like substances may be important in regulation of bacterial microbiota in oral cavity. The ability to produce bacteriocin-like substances by 80 oral F. nucleatum isolates obtained from periodontal patients, healthy individuals and Cebus apella monkeys, was examinated. 17.5% of all tested isolates showed auto-antagonism and 78.8% iso- or hetero-antagonism. No isolate from monkey was capable to produce auto-inhibition. In this study, the antagonistic substances production was variable in all tested isolates. Most of the F. nucleatum showed antagonistic activity against tested reference strains. These data suggest a possible participation of these substances on the oral microbial ecology in humans and animals. However, the role of bacteriocins in regulating dental plaque microbiota in vivo is discussed.

1998 ◽  
Vol 62 (1) ◽  
pp. 71-109 ◽  
Author(s):  
Harold Marcotte ◽  
Marc C. Lavoie

SUMMARY In the oral cavity, indigenous bacteria are often associated with two major oral diseases, caries and periodontal diseases. These diseases seem to appear following an inbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. To define the process involved in caries and periodontal diseases, it is necessary to understand the ecology of the oral cavity and to identify the factors responsible for the transition of the oral microbiota from a commensal to a pathogenic relationship with the host. The regulatory forces influencing the oral ecosystem can be divided into three major categories: host related, microbe related, and external factors. Among host factors, secretory immunoglobulin A (SIgA) constitutes the main specific immune defense mechanism in saliva and may play an important role in the homeostasis of the oral microbiota. Naturally occurring SIgA antibodies that are reactive against a variety of indigenous bacteria are detectable in saliva. These antibodies may control the oral microbiota by reducing the adherence of bacteria to the oral mucosa and teeth. It is thought that protection against bacterial etiologic agents of caries and periodontal diseases could be conferred by the induction of SIgA antibodies via the stimulation of the mucosal immune system. However, elucidation of the role of the SIgA immune system in controlling the oral indigenous microbiota is a prerequisite for the development of effective vaccines against these diseases. The role of SIgA antibodies in the acquisition and the regulation of the indigenous microbiota is still controversial. Our review discusses the importance of SIgA among the multiple factors that control the oral microbiota. It describes the oral ecosystems, the principal factors that may control the oral microbiota, a basic knowledge of the secretory immune system, the biological functions of SIgA, and, finally, experiments related to the role of SIgA in oral microbial ecology.


2003 ◽  
Vol 14 (3) ◽  
pp. 226-233 ◽  
Author(s):  
S.A. Dowsett ◽  
M.J. Kowolik

Helicobacter pylori infection is one of the most common in man. The bacterium primarily resides in the human stomach, where it plays a significant role in gastric disease. If the spread of H. pylori is to be prevented, an understanding of the transmission process is essential. The oral cavity has been proposed as a reservoir for gastric H. pylori, which has been detected by culture and PCR in both dental plaque and saliva. This review will discuss the evidence for the role of the oral cavity in the transmission of gastric H. pylori. Moreover, the difficulties encountered in addressing this topic, possible directions for future research, and the implications for the dental profession are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Céline Nourrisson ◽  
Julien Scanzi ◽  
Julie Brunet ◽  
Frédéric Delbac ◽  
Michel Dapoigny ◽  
...  

Blastocystis is the most frequently isolated protozoan from human stool. Its role in human health is still debated, and a high prevalence was reported in irritable bowel syndrome (IBS) subjects, suggesting a potential link with microbiota. In the present study, we aimed to investigate prokaryotic and eukaryotic microbiota in both IBS-C (constipated) and healthy individuals. We recruited 35 IBS-C patients and 23 healthy subjects, from which 12 and 11 carried Blastocystis, respectively. We performed 16S and 18S rRNA high-throughput sequencing on feces. Whereas we did not observe differences between infected and non-infected controls, several phyla were significantly modified in IBS-C patients according to the presence of Blastocystis. Tenericutes phylum and Ruminococcaceae family were especially increased in Blastocystis carriers. Furthermore, colonization with Blastocystis was associated with discrete changes in the microbial eukaryome, particularly among the Fungi taxa. Depending on the group of patients considered, the mycobiota changes do not go in the same direction and seem more deleterious in the IBS-C group. These results encourage further in vivo and in vitro investigations concerning the role of Blastocystis in the gut environment.


Author(s):  
Henry Ng ◽  
Sebastian Havervall ◽  
Axel Rosell ◽  
Katherina Aguilera ◽  
Kristel Parv ◽  
...  

Objective: The full spectrum of coronavirus disease 2019 (COVID-19) infection ranges from asymptomatic to acute respiratory distress syndrome, characterized by hyperinflammation and thrombotic microangiopathy. The pathogenic mechanisms are poorly understood, but emerging evidence suggest that excessive neutrophil extracellular trap (NET) formation plays a key role in COVID-19 disease progression. Here, we evaluate if circulating markers of NETs are associated with COVID-19 disease severity and clinical outcome, as well as to markers of inflammation and in vivo coagulation and fibrinolysis. Approach and Results: One hundred six patients with COVID-19 with moderate to severe disease were enrolled shortly after hospital admission and followed for 4 months. Acute and convalescent plasma samples as well as plasma samples from 30 healthy individuals were assessed for markers of NET formation: citrullinated histone H3, cell-free DNA, NE (neutrophil elastase). We found that plasma levels of NET markers were all elevated in patients with COVID-19 relative to healthy controls, were associated with respiratory support requirement and short-term mortality, and declined to those found in healthy individuals 4 months post-infection. Levels of the NET markers also correlated with white blood cells, neutrophils, inflammatory cytokines, and C-reactive protein, as well as to markers of in vivo coagulation, fibrinolysis, and endothelial damage. Conclusions: Our findings suggest a role of NETs in COVID-19 disease progression, implicating their contribution to an immunothrombotic state. Further, we observed an association between circulating markers of NET formation and clinical outcome, demonstrating a potential role of NET markers in clinical decision-making, as well as for NETs as targets for novel therapeutic interventions in COVID-19. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT04402944, NCT04541979, NCT04445285, NCT04432987, NCT04402970.


2016 ◽  
Vol 45 (10) ◽  
pp. 723-729 ◽  
Author(s):  
Alberta Lucchese ◽  
Enrica Gentile ◽  
Antonio Romano ◽  
Claudio Maio ◽  
Luigi Laino ◽  
...  

2007 ◽  
Vol 204 (11) ◽  
pp. 2603-2614 ◽  
Author(s):  
Hal Blumberg ◽  
Huyen Dinh ◽  
Esther S. Trueblood ◽  
James Pretorius ◽  
David Kugler ◽  
...  

The interleukin (IL)-1 family members IL-1α, -1β, and -18 are potent inflammatory cytokines whose activities are dependent on heterodimeric receptors of the IL-1R superfamily, and which are regulated by soluble antagonists. Recently, several new IL-1 family members have been identified. To determine the role of one of these family members in the skin, transgenic mice expressing IL1F6 in basal keratinocytes were generated. IL1F6 transgenic mice exhibit skin abnormalities that are dependent on IL-1Rrp2 and IL-1RAcP, which are two members of the IL-1R family. The skin phenotype is characterized by acanthosis, hyperkeratosis, the presence of a mixed inflammatory cell infiltrate, and increased cytokine and chemokine expression. Strikingly, the combination of the IL-1F6 transgene with an IL1F5 deficiency results in exacerbation of the skin phenotype, demonstrating that IL-1F5 has antagonistic activity in vivo. Skin from IL1F6 transgenic, IL1F5−/− pups contains intracorneal and intraepithelial pustules, nucleated corneocytes, and dilated superficial dermal blood vessels. Additionally, expression of IL1RL2, -1F5, and -1F6 is increased in human psoriatic skin. In summary, dysregulated expression of novel agonistic and antagonistic IL-1 family member ligands can promote cutaneous inflammation, revealing potential novel targets for the treatment of inflammatory skin disorders.


PRILOZI ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 87-99
Author(s):  
Urim Tefiku ◽  
Mirjana Popovska ◽  
Amella Cana ◽  
Lindita Zendeli-Bedxeti ◽  
Bilbil Recica ◽  
...  

AbstractIntroduction: One of the most important types of microorganisms in the oral cavity in both healthy and non-healthy individuals is Fusobacterium nucleatum. Although present as a normal resident in the oral cavity, this Gram-negative pathogen is dominant in periodontal disease and it is involved in many invasive infections in the population, acute and chronic inflammatory conditions, as well as many adverse events with a fatal outcome.Aim: To determine the role of F. nucleatum in the development of polymicrobial biofilms thus pathogenic changes in and out of the oral media.Material and method: A systematic review of the literature concerning the determination and role of F. nucleatum through available clinical trials, literature reviews, original research and articles published electronically at Pub Med and Google Scholar.Conclusion: The presence of Fusobacterium nucleatum is commonly associated with the health status of individuals. These anaerobic bacteria plays a key role in oral pathological conditions and has been detected in many systemic disorders causing complex pathogenethic changes probably due to binding ability to various cells thus several virulence mechanisms.Most common diseases and conditions in the oral cavity associated with F.nucleatum are gingivitis (G), chronic periodontitis (CH), aggressive periodontitis (AgP), endo-periodental infections (E-P), chronic apical periodontitis (PCHA). The bacterium has been identified and detected in many systemic disorders such as coronary heart disease (CVD) pathological pregnancy (P); polycystic ovary syndrome (PCOS), high-risk pregnancy (HRP), colorectal cancer (CRC); pre-eclampsia (PE); rheumatoid arthritis (RA); osteoarthritis (OA).


1984 ◽  
Vol 64 (5) ◽  
pp. 47-48 ◽  
Author(s):  
M. K. THEODOROU ◽  
D. J. GASCOYNE ◽  
D. E. BEEVER

Anaerobic, forage-containing medium was inoculated with rumen fluid and consecutive batch cultures were established. Microbial communities were maintained and cultures demonstrated quasi-steady-state. The VFA proportions from consecutive batch cultures which were transferred at 3-day intervals were similar to those obtained in vivo. Key words: Microbial ecology, rumen, batch culture


2019 ◽  
Vol 32 (4) ◽  
pp. 179-182
Author(s):  
Agnieszka Kaminska ◽  
Anna Malm ◽  
Jolanta Szymanska

Abstract Introduction. C. albicans genome sequencing enables investigation of the role of particular genes in biofilm formation involving the yeast-like fungi. Aim. The aim of the study was to determine the genotypes of C. albicans isolates on the basis of the presence of the selected genes involved in biofilm formation. Material and methods. The study material included C. albicans strains isolated from the oral cavity of 654 healthy individuals. The strain biofilm-forming capacity was estimated with the MTT assay and menadione. The presence of HWP1, ALS3, TUP1, NGR1, SAM2 and CYS3 genes was investigated. Results. In total, 15 gene combinations were found, including nine gene combinations for strains with a confirmed biofilm-forming capacity, 11 – for the strains without this capacity, and five – independent of biofilm-forming capacity. A combination involving all the genes occurred in 72.5% of all biofilm-forming strains and in 53.8% of all strains that do not form biofilm. Moreover, the genetic material of 14.3% of all strains not involved in biofilm formation did not contain any of the studied genes. For one of the biofilm-species, no analyzed genes were found. Conclusions 1. The absence of correlation between gene combinations HWP1, ALS3, TUP1, NGR1, SAM2 and CYS3 and biofilm-forming capacity of the studied C. albicans strains confirms the multigenetic – and not yet fully known – molecular basis of the formation of this structure. This result corresponds to the data reported by other researchers. 2. Knowledge on the genetic foundations of biofilm formation is still developing and the list of biofilm-related genes has been considerably extended. 3. The absence of correlation between the combinations of investigated genes and the biofilm-forming capacity of the studied C. albicans strains confirms a multigenetic, basis of this structure. 4. The research on genes activated or inhibited during biofilm formation is extremely important, because it would enable the development of effective methods to disturb the biofilm forming process at the molecular level. There is a need for such methods in our clinical practice to prevent biofilm formation in the oral cavity.


2020 ◽  
Author(s):  
pablo alejandro A Millones-Gómez ◽  
Reyma Evelyn Bacilio-Amaranto ◽  
Dora Maurtua Torres ◽  
Patricia Sheen Cortavarría ◽  
Yudith Cauna Orocollo ◽  
...  

Abstract Background:To successfully colonize the oral cavity, bacteria must adhere directly or indirectly to the oral surfaces available. Fusobacterium nucleatum plays an important role in the development of the oral biofilm community due to its broad adhesion capabilities, serving as a bridge between the members of the oral biofilm community that cannot be directly joined together. The purpose of this study was to identify and localize the proteins associated with the formation of biofilms of Streptococcus gordonii and F. nucleatum. Methods: Multispecies biofilms were identified by amplification of the srtA and radD genes by real-time PCR. Biofilm cells cultured with sucrose were counted. The protein concentrations in the membrane and cytoplasmic fractions were quantified by western blot. Results: The proteins HSP40 and GAPDH were detected in the cytoplasmic fraction of biofilm and F. nucleatum, respectively. The available anti-GAPDH antibody is specific for GAPDH produced by F. nucleatum, which indicated the coaggregation of F. nucleatum on S. gordonii. Conclusions: HSP40 was only detected in the cytoplasmic fraction of the biofilms, making it one of the essential proteins for adherence. This complex set of interactions could have critical implications for the formation and maturation of oral biofilms in vivo and could provide clues to the mechanism behind the distribution of organisms within the human oral cavity.


Sign in / Sign up

Export Citation Format

Share Document