scholarly journals Essential oil from two populations of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli (Chapéu de couro)

2006 ◽  
Vol 78 (4) ◽  
pp. 623-628 ◽  
Author(s):  
Daniel S. Pimenta ◽  
Maria Raquel Figueiredo ◽  
Maria Auxiliadora C. Kaplan

Analysis by Gas Chromatography and Gas Chromatography/Mass Spectrometry of the essential oils obtained from leaves of Echinodorus grandiflorus ("Chapéu de couro") from two different populations (Big Leaves and Small Leaves), collected monthly between September 1998 and December 1999 revealed 17 components. Phytol was the major constituent for both populations. The main sesquiterpene representatives are (E)-caryophyllene, alpha-humulene and (E)-nerolidol.

2009 ◽  
Vol 4 (11) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Amy Desautels ◽  
Kamal Biswas ◽  
Alexander Lane ◽  
Astrid Boeckelmann ◽  
Soheil S. Mahmoud

Linalool acetate, one of the major constituent of several essential oils, is heat-labile and decomposes upon exposure to the high injector temperature during gas chromatography. Here we report the development of an improved method for detection of this compound by gas chromatography mass spectrometry (GCMS) using cold on-column injection of the sample. By using this sensitive method, it has been demonstrated that a lavandin (L.x intermedia) mutant accumulates trace quantities of linalool acetate and camphor and higher amounts of cineole and borneol compared to its parent. This plant, which very likely carries a point mutation in one or more of the genes involved in essential oil production, provides a unique tool for investigating regulation of essential oil biogenesis in plants.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Deribachew Bekana ◽  
Tesfahun Kebede ◽  
Mulugeta Assefa ◽  
Habtemariam Kassa

Oleogum resins of B. papyrifera, B. neglecta, and B. rivae were collected from northwestern, southern, and southeastern Ethiopia, and their respective methanol extracts and essential oils were extracted and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The investigation on essential oils led to the identification of 6, 7, and 8 constituents for B. papyrifera, B. neglecta, and B. rivae, respectively. The essential oil of B. papyrifera is mainly characterized by the presence of octyl acetate (57.1–65.7%) and n-octanol (3.4–8.8%). B. neglecta is rich in α-pinene (32.6–50.7%) followed by terpinen-4-ol (17.5–29.9%) and α-thujene (12.7–16.5%), whereas B. rivae was predominated by α-pinene (32.5–66.2%) followed by p-cymene (5.7–21.1%) and limonene (1.1–19.6%). Methanol extracts of the three Boswellia species were found to consist of diterpines (incensole, incensyl acetate and verticilla-4(20),7,11-triene), triterpenes (β-amyrin, α-amyrin, β-amyrenone, and α-amyrenone), nortriterpenes (24-noroleana-3,12-diene and 24-norursa-3,12-diene), and α-boswellic acid. The investigation on the methanol extract showed that only B. papyrifera contains diterpenes and nortriterpenes, whereas B. rivae and B. neglecta consist of only triterpenes. The results indicate that the three Boswellia species were characterized by some terpenes and these terpenoic constituents could be recognized as chemotaxonomical markers for each species.


2004 ◽  
Vol 1 (3) ◽  
pp. 301-303 ◽  
Author(s):  
Betül Demirci ◽  
Dietrich H. Paper ◽  
Fatih Demirci ◽  
K. Hüsnü Can Başer ◽  
Gerhard Franz

The essential oil ofBetula pendulaRoth. buds was obtained using both hydrodistillation and microdistillation techniques and their chemical compositions were analyzed using both gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS). Overall, more than 50 compounds were identified representing 80% and 92% for hydrodistillation and microdistillation, respectively. The main components (by hydrodistillation and microdistillation, respectively) found were α-copaene (12% and 10%), germacrene D (11% and 18%) and δ-cadinene (11% and 15%) in the analyzed essential oils. The microdistillation technique proved to be a useful tool and compliant alternative when compared to hydrodistillation.


2015 ◽  
Vol 49 (3) ◽  
pp. 181-184
Author(s):  
Z Parveen ◽  
S Siddique ◽  
Z Ali

The hydro-distilled essential oil of Citrus reticulata Blanco var. kinnow was analyzed by Gas chromatography-mass spectrometry (GC-MS). Five constituents out of fifteen constituents were identified from seeded C. reticulata oil representing 74.66% of the oil. The major constituent of the oil was ?- phellandrene (62.00%). ?-pinene(6.53%), ?-myrcene(2.81%), limonene(2.81%) and caryophyllene(0.51%) were present in considerable amount. From the low seeded C. reticulata oil, six components out of seventeen compounds were identified constituting 54.74% of the oil and the main component was ?-phellandrene (37.35%). ?-pinene(2.79%), ?-pinene(3.26%), ?-myrcene(4.16%), limonene(5.77%), caryophyllene(1.41%) were present in considerable amount. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22132 Bangladesh J. Sci. Ind. Res. 49(3), 181-184, 2014


2005 ◽  
Vol 60 (1-2) ◽  
pp. 25-29 ◽  
Author(s):  
Ana P. Murray ◽  
María A. Frontera ◽  
María A. Tomas ◽  
María C. Mulet

The essential oil composition from the aerial parts of three Anacardiaceae growing in Bahía Blanca, Argentina was studied by gas chromatography and gas chromatography-mass spectrometry. The essential oils of S. longifolia and S. fasciculata have been studied for the first time. The major constituents were α-pinene (46.5%), β-pinene (15.1%) and α-phellandrene (10.1%) for S. longifolia and limonene (10.9%), β-phellandrene (6.16%) and α-phellandrene (5.6%) for S. fasciculata. The major components of the essential oil of S. areira were limonene (28.6%), α-phellandrene (10.1%), sabinene (9.2%) and camphene (9.2%) differing from the literature data. The essential oils from S. areira and S. longifolia exhibited a high biotoxicity in a brine shrimp assay with Artemia persimilis.


2016 ◽  
Vol 70 (12) ◽  
Author(s):  
Paulius Kaškonas ◽  
Žydrūnas Stanius ◽  
Vilma Kaškonienė ◽  
Kȩestutis Obelevičius ◽  
Ona Ragažinskienė ◽  
...  

AbstractThis study describes the analysis of total hops essential oils from 18 cultivated varieties of hops, five of which were bred in Lithuania, and 7 wild hop forms using gas chromatography-mass spectrometry. The study sought to organise the samples of hops into clusters, according to 72 semi-volatile compounds, by applying a well-known method,


2012 ◽  
Vol 7 (1) ◽  
pp. 1934578X1200700
Author(s):  
Xiaoying Zhou ◽  
Qian Yu ◽  
Haiyan Gong ◽  
Shuge Tian

The essential oils of Ziziphora clinopodioide Lam. from four different production areas (Banfang ditch; Altay mountains; Tuoli; Terks) were investigated. The oils were extracted by hydro-distillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Seventeen constituents were identified in the essential oil from Banfang ditch, 20 in that from the Altay mountains, 12 in the Tuoli essential oil, and 9 in the Terks sample. The major components of the oils were pulegone (67.6%, 32.5%, 86.4%, and 82.1%) and p-menthanone (14.8%, 43.7%, 3.2%, and 8.2% from the Banfang ditch, Tuoli, Altay mountains, and Terks samples, respectively).


2013 ◽  
Vol 8 (4) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Nor Akmalazura Jani ◽  
Hasnah Mohd. Sirat ◽  
NorAzah Mohamad Ali ◽  
Azrina Aziz

The chemical compositions of the essential oil of the rhizome, leaf and stem of Hornstedtia leonurus Retz., collected from Negeri Sembilan, Malaysia, are reported for the first time. The essential oils were extracted using hydrodistillation and analyzed by gas chromatography (GC-FID) and gas chromatography/mass spectrometry (GC/MS). Seventeen (96.4%), thirteen (89.2%) and nine components (98.8%) were successfully identified from the rhizome, stem and leaf oils, respectively. Phenylpropanoids were found to be the major fraction, with methyleugenol being the most abundant compound in all oils with percentage compositions of 76.4% (rhizome), 80.3% (stem) and 74.5% (leaf).


2011 ◽  
Vol 6 (5) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Farukh S. Sharopov ◽  
William N. Setzer

The chemical composition of the essential oils of Ziziphora clinopodioides Lam. from the aerial flowering parts, collected during two different years, were obtained by hydrodistillation and analyzed by gas chromatography – mass spectrometry. Forty-five components representing 100% and 94.7% of the total oil were identified. The main constituents of the essential oils were pulegone (72.8 and 35.0%), neomenthol (6.5 and 23.1%), menthone (6.2 and 13.3%), p-menth-3-en-8-ol (1.7 and 3.5%), piperitenone (2.6 and 1.1%) and piperitone (0.7 and 1.2%). A cluster analysis was carried out on the essential oil compositions of Z. clinopodioides.


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601
Author(s):  
Farukh S. Sharopov ◽  
Muhamadsho A. Kukaniev ◽  
William N. Setzer

Origanum tyttanthum Gontsch. was collected from two different sites in south-central Tajikistan. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography – mass spectrometry. A total of 52 compounds were identified representing 99.0-100% of total oil compositions. The major components of Origanum tyttanthum Gontsch. oil were carvacrol (34.3-59.2%), thymol (10.8-46.4%), p-cymene (0.7-7.3%), β-thujone (1.9-4.1%), piperitenone oxide (0.1-3.8%), γ-terpinene (0.3-3.5%), cis-piperitone epoxide (0.8-3.3%), carvacrol acetate (0.4-2.4%), menthone (0.6-2.1%) and borneol (1.0-2.3%).


Sign in / Sign up

Export Citation Format

Share Document