scholarly journals Soil phosphorus fractions in sandy soils amended with cattle manure for long periods

2009 ◽  
Vol 33 (3) ◽  
pp. 613-622 ◽  
Author(s):  
Sandra Regina da Silva Galvão ◽  
Ignacio Hernan Salcedo

Phosphorus fractions were determined in soil samples from areas fertilized or not with farmyard cattle manure (FYM) and in samples of FYM used in the semi-arid region of Paraiba state, Brazil. Soil samples were taken from the 0-20; 20-40 and 40-60 cm layers of 18 cultivated areas, which, according to interviews with farmers, had been treated with 12 to 20 t ha-1 FYM annually, for the past 2 to 40 years. Soil samples were also collected from four unfertilized pasture areas as controls. Phosphorus in the soil samples was sequentially extracted with water (Pw), resin (Pres), NaHCO3 (Pi bic and Po bic), NaOH (Pi hid and Po hid), H2SO4 (Pacid) and, finally, by digestion with H2SO4/H2O2 (Presd). Nine FYM samples were extracted with water, resin, Mehlich-1, H2SO4, NaOH or digestion with H2SO4/H2O2, not sequentially, and the extracts analyzed for P. The sampled areas had homogeneous, sandy and P-deficient soils; increases in total soil P (Pt) above the mean value of the control areas (up to 274 mg kg-1 in the 0-20 cm layer of the most P-enriched samples) were therefore attributed to FYM applications, which was the only external P input in the region. Regression analysis was used to study the relationship between soil P fractions and Pt. The Pacid fraction, related to Ca-P forms, showed the greatest increases (p < 0.01) as a result of FYM applications, rising from 8.4 mg kg-1 in a non-fertilized sample to 43.8 mg kg-1 in the sample with the highest Pt content. The sum of Pw, Pres and Pi bic, considered as labile P, showed comparable increases with Pacid, while Pi hid showed the smallest increase due to FYM applications. Organic P forms also increased, more so the fraction Po hid, considered less labile, than the more labile one, Po bic. The residual P fraction was practically half of Pt, independently of the Pt value. Increases in labile P, Pacid and organic P were justified by the high average concentration of Pw (36 %), Pacid (34 %), and Po hid (30 %) in the FYM. Significant changes in the proportion of P forms among soil layers indicated the downward movement of P in organic forms.

1995 ◽  
Vol 75 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Thi Sen Tran ◽  
Adrien N’dayegamiye

Long-term application of cattle manure and fertilizer can affect the forms and availability of soil phosphorus. This cumulative effect was evaluated on Le Bras silt loam (Humic Gleysol) cultivated with silage corn (Zea mays L.). In this long-term trial, treatments were arranged in a split-plot design, with dairy cattle manure applied at 0 and 20 Mg ha−1 as the main factor. The subplots consisted of six fertilizer treatments (NK, PK, NP, NPK, NPKMg and the unfertilized check). Fertilizer rates for silage corn were 150, 100, 150 and 40 kg ha−1 N, P205, K20 and Mg, respectively. The N fertilizer rate was reduced to 100 kg N ha−1 in manured plots. Soil inorganic P (Pi) and organic P (Po) fractions were sequentially extracted by resin, NaHCO3, NaOH, HCl and a final H2SO4 wet digestion of the residue. On average, labile P extracted by resin and NaHCO3 represented 17% of the total P (Pt); moderately labile NaOH-Pi and Po more than 40%; and stable P 36%. Application of manure and fertilizers increased significantly resin-, NaHCO3-, NaOH-Pi and Pt. However, NaOH-Po was decreased by P fertilizer application in NPK and NPKMg treatments, while long-term manure application maintained this Po pool in the soil. Stable P fractions were not affected by fertilization or by manuring. In all 6 yr of the study, P uptake by silage corn was significantly increased both by long-term N and P fertilizer application and also by manure incorporation. Phosphorus uptake by corn was highly related to all labile and moderately labile Pi fractions and Pt. Long-term application of dairy manure at a rate of 20 t ha−1 increased soil Pi forms and maintained Po fractions. Key words: Inorganic labile P, organic P, soil-P fractionation, P uptake, silage corn


2011 ◽  
Vol 57 (No. 5) ◽  
pp. 228-234 ◽  
Author(s):  
G. Xu ◽  
J.N. Sun ◽  
R.F. Xu ◽  
Y.C. Lv ◽  
H.B. Shao ◽  
...  

Little is known about the effects of air-drying and freezing on the transformation of phosphorus (P) fractions in soils. It is important that the way in which soils respond to such perturbations is better understood as there are implications for both P availability and loss to surface waters from soils. In this study, the effects of air-drying and freezing were investigated using two soils, one being a forest soil (FS) high in organic matter and the other being a sterile soil (SS) low in organic matter. Soil P was fractionated using a modified Hedley fractionation method to examine the changes of phosphorus fractions induced by air-drying and freezing. Generally, there were no significant differences of total phosphorus among the three treatments (CV% &lt; 10%). Compared with field moist soils, freezing the soil evoked few changes on phosphorus fractions except that the resin-P increased in FS soil. On the contrary, air-drying significantly changed the distribution of phosphors fractions for both soils: increased the labile-P (especially resin-P) and organic-P (NaHCO<sub>3</sub>-Po, NaOH-Po and Con.HCl-Po) at the expense of NaOH-Pi and occlude-P (Dil.HCl-P and Con.HCl-Pi). Resin-P significantly increased by 31% for SS soil and by 121% for FS soil upon air-drying. The effect of air-drying seemed to be more pronounced in the FS soil with high organic matter content. These results indicated that drying seem to drive the P transformation form occlude-P to labile-P and organic-P and accelerated the weathering of stable P pool. This potentially could be significant for soil P supply to plants and P losses from soils to surface waters under changing patterns of rainfall and temperature as predicted by some climate change scenarios. &nbsp;


2003 ◽  
Vol 60 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Edemar Joaquim Corazza ◽  
Michel Brossard ◽  
Takashi MuraokaI ◽  
Maurício Antonio Coelho Filho

Studies on soil phosphorus (P) of low productivity cultivated pastures in Cerrado (Brazilian Savanna) areas and surveys on other possible problems related to P are scarce. The spatial variability of soil phosphorus content of a Rhodic Ferralsol was studied in a low productivity pasture of Brachiaria brizantha (BB) grown for 10 years, without fertilizer application, in an experimental area at Planaltina (GO), Brazil. Soil samplings were performed on a regular grid of 10 by 10 meters, with 98 sampling points before (between tussocks and under tussocks) and after the establishment of the experiment (after fertilizing). On the same grid, forage plants were collected and separated into fractions for N and P content analyses. Soil available phosphate was determined by the resin method (Pr) and complemented by the 32P isotopic exchange kinetics analysis. Descriptive statistical and geostatistical analyses were utilized to describe the spatial variability. The Pr content on soil samples under tussocks presented mean and median values 45% larger than in soil samples taken between tussocks. The higher variation is probably related to the greater concentration of BB roots, soil organic matter content and soil P recycled through the plants tussocks. The spatial variability of Pr in this soil was high especially after fertilizer application. This variable did not present spatial dependence for the regular 10 m sampling. The generated knowledge on P variability of soils under low productivity cultivated pastures revealed problems related to the sampling methodology traditionally utilized and to P application.


2018 ◽  
Vol 69 (8) ◽  
pp. 846 ◽  
Author(s):  
Dangjun Wang ◽  
Zhibin He ◽  
Zhen Zhang ◽  
Qingfeng Du ◽  
Yong Zhang ◽  
...  

Low plant-available phosphorus (P) in degraded arid steppes greatly limits plant yields. However, whether exterior P addition will improve the soil P availability and thus increase plant yield in these degraded arid steppes is still not certain. In the current study, a severely degraded arid steppe in Inner Mongolia, China, with soil-available P <5 mg/kg, was fertilised annually with chemical or manure P for two years (2014, dry year; 2015, wet year). There were six fertilisation treatments: 0, 30 kg P/ha, 60 kg P/ha, 90 kg P/ha, 4000 kg sheep manure/ha (equalling 16.4 kg P/ha) and 8000 kg sheep manure/ha (32.8 kg P/ha). A pot experiment with Stipa krylovii (the dominant plant species in the tested steppe) and five P application rates (0, 30, 60, 90 and 120 kg P/ha) was also conducted, under well-watered and nitrogen-fertilised conditions, using surface soils from unfertilised plots in the field. Results indicated that the tested soils had strong P adsorption capacity and weaker desorption capacity, and that the labile P fractions were quickly transformed into less labile fractions, reducing P availabilities. Overall, chemical P fertiliser resulted in the accumulation of Ca10-P and occluded P, whereas sheep manure resulted in the accumulation of moderately resistant organic P and highly resistant organic P. Phosphorus fertilisation was associated with an increase in plant P concentrations in both 2014 and 2015, and a low P rate (30 kg P/ha in the current study) was able to improve the aboveground biomass in both the field experiment in the wet year and the pot experiment under well-watered conditions. Thus, in degraded arid steppes, P fertilisation may be unnecessary in dry years. A low rate of P fertilisation is recommended in wet years to improve soil P status and steppe plant productivity.


2008 ◽  
Vol 88 (3) ◽  
pp. 377-387 ◽  
Author(s):  
C. Stumborg ◽  
J J Schoenau

An understanding of the impact of repeated manure additions on soil phosphorus (P) is needed to determine appropriate manure application rates for prairie soils and manure sources. The objective of this study was to assess the loading of manure-derived phosphorus using P budgets and soil P measurement techniques applied to two Saskatchewan soils with known histories of manure application. Liquid hog manure (LHM) and solid cattle manure (SCM) treatments were applied annually over 8 yr to Black Chernozemic soils (Dixon site), and LHM was applied to Dark Brown Chernozemic soils (Plenty site) over 6 yr. Soil samples were collected in the spring of 2003 and 2004 and analyzed for labile P (Modified Kelowna extractable, Olsen extractable, water extractable, and Plant Root Simulator exchange resin methods) and total P. The P budgets were in good agreement with the observed patterns in labile soil P at the two sites. The annual application of LHM (37000 L ha-1 yr-1) at agronomic nitrogen (N) rates with no additional P fertilizer (Dixon only) did not significantly elevate soil labile P compared with the unfertilized controls at both Dixon and Plenty. The annual application of SCM (7.6 Mg ha-1 yr-1) at agronomic N rates did not significantly elevate soil labile P compared with the unfertilized control at Dixon; whereas of SCM at higher rates (15.2 Mg ha-1 yr-1 and 30.4 Mg ha-1 yr-1) showed some elevation in labile soil P. Measures of labile P were sensitive to P surpluses or deficits predicted by P balances, and all methods of measuring labile soil P were strongly correlated with one another at both sites (r ≥ 0.803 at P ≤ 0.01). Key words: Manure, cattle manure, nitrogen, phosphorus, soil test phosphorus


1971 ◽  
Vol 51 (3) ◽  
pp. 363-369
Author(s):  
MATT K. JOHN ◽  
E. H. GARDNER

The distribution of different forms of phosphorus was determined for soil samples and particle size fractions from a sequence of soils developed on Fraser River alluvium. The values for inorganic P when apportioned as aluminum-P, iron-P, reductant-P and calcium-P were found to be dependent on soil-forming processes. Calcium-P levels decreased and iron-P and organic-P levels increased with increasing distance from the river, and with more pronounced profile development. Changes in the relative amounts of these various forms of soil P occurred over relatively short distances and affected the amounts of P extracted in standard soil testing methods. P levels depended very little on soil texture for the majority of the soils, although there was some evidence in favor of fine particle sizes over the sand fractions as a source of P in one of the profiles.


Author(s):  
L.M. Condron ◽  
K.M. Goh

Changes in soil phosphorus (P) associated with the establishment and maintenance of improved ryegrass-clover pasture under different superphosphate fertiliser treatments were examined over a 20-year period (1957-77). Results showed that soil organic P increased with increasing applications of P fertiliser. This represents a dynamic balance between rates of organic P addition and breakdown in the soil. This balance is reached slowly and may be significantly altered only by drastic changes in land use. In annually fertilised soils, amounts of inorganic P increased with time. However, the potential utilisation of this residual inorganic P is limited by its apparent stability in the soil. Keywords grazed pasture, irrigation, fertiliser P, soil inorganic P, soil organic P, soil P fractionation


1981 ◽  
Vol 53 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Helinä Hartikainen

The extractability of P by the water and anion exchange resin methods and reactions of soil inorganic P were investigated with seven acid mineral soil samples incubated with KOH solutions of various concentrations. The results were compared with the analytical data obtained from three soil samples incubated in a prolonged liming experiment. The resin extraction method proved more effective than the water extraction method. The amounts of P desorbed by both methods seemed to increase exponentially as the pH in the soil suspensions rose. The factors involved were discussed. On the basis of fractionation analyses P reacting to changes in the pH and participating in desorption processes was supposed to originate from secondary NH4F and NaOH soluble reserves. In general, as the acidity decreased NH4F-P increased at the expense of NaOH-P. In heavily limed gyttja soil also H2SO4-P increased. This was possibly induced by the precipitation of mobilized P as a Ca compound. The significance of pH in the extractability of soil P seemed somewhat to lessen as the amount of secondary P increased. The results were in accordance with the conception that liming improves the availability of inorganic P to plants and reduces the need for P fertilization. However, increasing of the soil pH involves the risk that P is more easily desorbed to the recipient water by the eroded soil material carried into the watercourse. Therefore, intensive liming is not recommendable close to the shoreline. Further, it should be taken into account that liming of lakes may also result in eutrophication as desorption of sedimentary inorganic P is enhanced.


2020 ◽  
Author(s):  
Curt A. McConnell ◽  
Jason P. Kaye ◽  
Armen R. Kemanian

Abstract. Soil phosphorus (P) management remains a critical challenge for agriculture worldwide, and yet we are still unable to predict soil P dynamics as confidently as that of carbon (C) or nitrogen (N). This is due to both the complexity of inorganic P (Pi) and organic P (Po) cycling and the methodological constraints that have limited our ability to trace P dynamics in the soil-plant system. In this review we describe the challenges to building parsimonious, accurate, and useful P models and to explore the potential of some new techniques to advance modeling efforts. To advance our understanding and modeling of P biogeochemistry, research efforts should focus on the following: 1) update the McGill and Cole (1981) model of Po mineralization by clarifying the role and prevalence of “biochemical” and “biological” Po mineralization which we hypothesize are not mutually exclusive and may co-occur along a continuum of Po substrate stoichiometry; 2) further understand the dynamics of phytate, a 6-C compound that can regulate the poorly understood stoichiometry of soil P; 3) explore the effects of C and Po saturation on P sorption and Po mineralization; and 4) resolve discrepancies between hypotheses about P cycling and the methods used to test these hypotheses.


2019 ◽  
Vol 16 (15) ◽  
pp. 3047-3068 ◽  
Author(s):  
Wolfgang Wanek ◽  
David Zezula ◽  
Daniel Wasner ◽  
Maria Mooshammer ◽  
Judith Prommer

Abstract. Efforts to understand and model the current and future behavior of the global phosphorus (P) cycle are limited by the availability of global data on rates of soil P processes, as well as their environmental controls. Here, we present a novel isotope pool dilution approach using 33P labeling of live and sterile soils, which allows for high-quality data on gross fluxes of soil inorganic P (Pi) sorption and desorption, as well as of gross fluxes of organic P mineralization and microbial Pi uptake to be obtained. At the same time, net immobilization of 33Pi by soil microbes and abiotic sorption can be easily derived and partitioned. Compared with other approaches, we used short incubation times (up to 48 h), avoiding tracer remineralization, which was confirmed by the separation of organic P and Pi using isobutanol fractionation. This approach is also suitable for strongly weathered and P-impoverished soils, as the sensitivity is increased by the extraction of exchangeable bioavailable Pi (Olsen Pi; 0.5 M NaHCO3) followed by Pi measurement using the malachite green assay. Biotic processes were corrected for desorption/sorption processes using adequate sterile abiotic controls that exhibited negligible microbial and extracellular phosphatase activities. Gross rates were calculated using analytical solutions of tracer kinetics, which also allowed for the study of gross soil P dynamics under non-steady-state conditions. Finally, we present major environmental controls of gross P-cycle processes that were measured for three P-poor tropical forest and three P-rich temperate grassland soils.


Sign in / Sign up

Export Citation Format

Share Document