scholarly journals Impacts of land leveling on lowland soil physical properties

2014 ◽  
Vol 38 (1) ◽  
pp. 315-326 ◽  
Author(s):  
José Maria Barbat Parfitt ◽  
Luís Carlos Timm ◽  
Klaus Reichardt ◽  
Eloy Antonio Pauletto

The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd) and bulk density (Bd); total porosity (Tp), macroporosity (Macro) and microporosity (Micro); available water capacity (AWC); sand, silt, clay, and dispersed clay in water (Disp clay) contents; electrical conductivity (EC); and weighted average diameter of aggregates (WAD). Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all soil physical properties changed as a result of leveling and its effect on all soil physical properties occurred in the whole area and not specifically in the cutting or filling areas. In future designs of leveling, we recommend overlaying a cut/fill map on the map of soil depth to the top of the B horizon in order to minimize areas with shallow surface soil after leveling.

2021 ◽  
pp. 1-3
Author(s):  
Suman Das ◽  
B.S. Mipun

Soil quality is an assimilation of soil processes and evaluates the changes in soil condition. At present, soil quality is defined as “capacity of soil to function”. Among the soil properties, Soil physical properties are more important than other properties. Soil physical properties are essential for farmers to know about their agricultural lands for better utilization and profit maximization. After studying the areal distribution of individual soil physical properties, it is seen that soil properties are not evenly distributed in the study area. But through scientific implementation of land management system and proper utilization of land may improve soil physical properties (soil quality) and standard of living of farmers for better future.


2012 ◽  
Vol 29 (7) ◽  
pp. 933-943 ◽  
Author(s):  
Weinan Pan ◽  
R. P. Boyles ◽  
J. G. White ◽  
J. L. Heitman

Abstract Soil moisture has important implications for meteorology, climatology, hydrology, and agriculture. This has led to growing interest in development of in situ soil moisture monitoring networks. Measurement interpretation is severely limited without soil property data. In North Carolina, soil moisture has been monitored since 1999 as a routine parameter in the statewide Environment and Climate Observing Network (ECONet), but with little soils information available for ECONet sites. The objective of this paper is to provide soils data for ECONet development. The authors studied soil physical properties at 27 ECONet sites and generated a database with 13 soil physical parameters, including sand, silt, and clay contents; bulk density; total porosity; saturated hydraulic conductivity; air-dried water content; and water retention at six pressures. Soil properties were highly variable among individual ECONet sites [coefficients of variation (CVs) ranging from 12% to 80%]. This wide range of properties suggests very different behavior among sites with respect to soil moisture. A principal component analysis indicated parameter groupings associated primarily with soil texture, bulk density, and air-dried water content accounted for 80% of the total variance in the dataset. These results suggested that a few specific soil properties could be measured to provide an understanding of differences in sites with respect to major soil properties. The authors also illustrate how the measured soil properties have been used to develop new soil moisture products and data screening for the North Carolina ECONet. The methods, analysis, and results presented here have applications to North Carolina and for other regions with heterogeneous soils where soil moisture monitoring is valuable.


2018 ◽  
Vol 29 (2) ◽  
Author(s):  
V. A. Gorban

For the current stage of the development of soil science it is relevant to search for objectively existing interactions between the various soil properties. Solving this issue most appropriately should be based on the establishment of pedotransfer functions. Pedotransfer functions appeared at the time of the birth of quantitative soil science, when one of the properties of the soil tried to predict others when it became clear that everything in the soil is interrelated when it was established that there is a well-defined number of fundamental, basic properties of the soil, which is basically defines its other properties. Accordingly, the purpose of our work is to establish the diagnostic value of the individual soil physical properties of forest biogeocoenoses of the steppe by means of determining the existing interconnections between them and other properties and characteristics of these soils. The solution of this issue is one of the tasks of developing research on the soil physical properties of forest biogeocoenoses of the Ukrainian steppe zone. The diagnostic value of granulometric and structural-aggregate composition, density and permeability for determining the general state of soils due to the existence of certain interactions between the indicated parameters and other soil properties is considered. The granulometric composition is a fundamental soil characteristic that determines not only the physical state, but also all the main soil properties and regimes of forest biogeocoenoses of the Ukrainian steppe zone. The structural and aggregate composition is an important complex diagnostic feature of chernozem, which helps to reveal the peculiarities of their genesis under the influence of forest vegetation, in particular as a result of changes in the content and composition of organic matter, exchange cations, the influence of root vegetation systems, etc. The soil density, due to existing interactions with other soil properties, is an important diagnostic feature that reflects the features of their genesis and regimes, which determines the specificity of the ecological functions of the soils of forest biogeocoenoses of the Ukrainian steppe zone. Water permeability can be considered as a complex characteristic of soils, which to a certain extent reflects their granulometric composition, porosity, structural and aggregate composition, determines the features of the water-air regime. The differences of physical properties of zonal chernozems and chernozems, the genesis of which are connected with artificial and natural forest biogeocoenoses within the steppe zone of Ukraine, are analyzed. The relevance of the further search for relationships between physical indicators that are easily and promptly analyzed, and other soil properties for expanding diagnostic possibilities with respect to their genesis is pointed out.


2020 ◽  
Author(s):  
Tomoki Oda ◽  
Megumi Kuroiwa ◽  
Naoya Fujime ◽  
Kazuo Isobe ◽  
Naoya Masaoka ◽  
...  

<p>Ammonium (NH<sub>4</sub><sup>+</sup>) and nitrate (NO<sub>3</sub><sup>–</sup>) concentrations and production rates in forest soil vary by hillslope position due to variation in ammonia-oxidizing microorganism concentrations, soil chemistry, and surface soil moisture. These spatial distributions have a significant effect on nutrient cycles and streamwater chemistry. Soil moisture conditions significantly restrict microbial activity, influencing the spatial distribution of NO<sub>3</sub><sup>–</sup> concentrations on forest hillslopes. However, studies linking forest hydrological processes to nitrogen cycling are limited. Therefore, we investigated the determinants of spatial variation in soil moisture and evaluated the effects of soil moisture fluctuations on spatial variation in NO<sub>3</sub><sup>–</sup> concentration and production rate.</p><p>The study sites were the Fukuroyamasawa Experimental Watershed (FEW) and Oyasan Experimental Watershed (OEW) in Japan. The two have similar topographies, climates, and tree species. In each watershed, a 100 m transect was set up from the ridge to the base of the slope, and soil moisture sensors were installed at soil depths of 10 cm and 30 cm at both the top and bottom of the slope. We collected surface soil samples at a depth of 10 cm at the top, middle, and bottom of the slopes using 100 cm<sup>3</sup> cores, and measured soil physical properties, particle size distribution, volcanic ash content, chemical properties (pH, NO<sub>3</sub><sup>–</sup>, NH<sub>4</sub><sup>+</sup>, nitrification rate, and mineralization rate), and microbial content (archaeal content). Spatial and temporal changes in soil moisture on the hillslope were calculated using HYDRUS-2D to examine contributing factors of soil moisture.</p><p>At FEW, high NO<sub>3</sub><sup>–</sup> concentrations and nitrification rates were observed only at the slope bottom and middle, and no NO<sub>3</sub><sup>–</sup> concentrations were detected at up slope. By contrast, at OEW, high NO<sub>3</sub><sup>–</sup> concentrations and nitrification rates were observed at all points. NH<sub>4</sub><sup>+</sup> concentrations were similar at all points in both watersheds. At FEW, 10 cm surface soil moisture fluctuated within 25–40% at the slope top but was within 40–50% at the slope bottom. At OEW, surface soil moisture was 30–40% at both the slope top and bottom, with no significant differences according to slope position. It was confirmed that soil moisture was significantly involved in NO<sub>3</sub><sup>– </sup>concentration and nitrification rates. Model simulations showed that the difference in soil moisture fluctuations between FEW and OEW was mainly explained by the spatial variation in soil physical properties. In particular, volcanic ash influenced soil moisture along the entire slope at OEW, resulting in high water retention, but only influenced soil moisture at the slope bottom at FEW. These findings indicate that spatial variability in soil physical properties has a significant effect on soil moisture fluctuation and leads to a spatial distribution of NO<sub>3</sub><sup>–</sup> production.</p>


2009 ◽  
Vol 89 (4) ◽  
pp. 473-488 ◽  
Author(s):  
A Biswas ◽  
B C Si

The relationship between soil properties may vary with their spatial separation. Understanding this relationship is important in predicting hydraulic parameters from other soil physical properties. The objective of this study was to identify spatially dependent relationships between hydraulic parameters and soil physical properties. Regularly spaced (3-m) undisturbed soil samples were collected along a 384 m transect from a farm field at Smeaton, Saskatchewan. Saturated hydraulic conductivity, the soil water retention curve, and soil physical properties were measured. The scaling parameter, van Genuchten scaling parameter α (VGα), and curve shape parameter, van Genuchten curve shape parameter n (VGn), were obtained by fitting the van Genuchten model to measured soil moisture retention data. Results showed that the semivariograms of soil properties exhibited two different spatial structures at spatial separations of 20 and 120 m, respectively. A strong spatial structure was observed in organic carbon, saturated hydraulic conductivity (Ks), sand, and silt; whereas a weak structure was found for VGα and VGn. Correlation circle analysis showed strong spatially dependent relationships of Ks and VGα; with soil physical properties, but weak relationships of θs and VGn with soil physical properties. The spatially dependent relationships between soil physical and soil hydraulic parameters should be taken into consideration when developing pedotransfer functions. Key words: Spatial relationship, geostatistics, linear coregionalization model, principal component analysis, pedotransfer function


2018 ◽  
Vol 98 (3) ◽  
pp. 421-435 ◽  
Author(s):  
J.J. Miller ◽  
B.W. Beasley ◽  
C.F. Drury ◽  
F.J. Larney ◽  
X. Hao ◽  
...  

Long-term application of feedlot manure to cropland may change the physical properties of soils. We measured selected soil (surface) physical properties of a Dark Brown Chernozemic clay loam where different amendments were annually applied for 15 (2013), 16 (2014), and 17 (2015) yr. The treatments were stockpiled (SM) or composted (CM) manure with either straw (ST) or wood-chip (WD) bedding applied at three rates (13, 39, and 77 Mg ha−1) and an unamended control. The effect of selected or all treatments on selected properties was determined in 2013–2015. These properties included field-saturated (Kfs) and near-saturated hydraulic conductivity or K(ψ), bulk density (BD), volumetric water content, soil temperature, soil thermal properties, and wet aggregate stability. The hypotheses that selected soil physical properties would improve more for treatments with greater total carbon in the amendments (SM > CM, WD > ST) was rejected. The exceptions were significantly (P ≤ 0.05) lower soil BD for SM than CM and WD than ST for certain dates, and lower soil thermal conductivity for WD than ST. Most soil physical properties generally had no response to 15–17 yr of annual applications of these feedlot amendments, but a few showed a positive response.


Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 704 ◽  
Author(s):  
M. A. Busari

Moderation of soil disturbance following tillage operations using external inputs, particularly organic manures, is becoming an important aspect of soil tillage management. This study examined the effects of tillage, poultry manure (PM) and NPK fertiliser on soil physical properties and their relationship with maize yield. The experiment was a split-split-plot design with three replications. Tillage (zero tillage (ZT), minimum tillage (MT) and conventional tillage (CT)) was the main plot, the subplot contained four NPK fertiliser treatments (0, 90, 120 and 150kg N ha–1), and the sub-subplots comprised three PM treatments (0, 10 and 20 Mg ha–1). The soil texture was gravelly loamy sand. Soil bulk density (BD), total porosity (Pt), clay dispersion ratio (CDR) and saturated hydraulic conductivity (Ks) were evaluated. Samples for BD and Ks were collected from the soil surface using stainless cylindrical soil core (5cm in diameter and 5cm in height), whereas samples for CDR determination were collected at 0–20cm soil depth. Compared with the ZT, significantly lower BD was obtained under CT plots at 4 weeks after planting (WAP), which increased at 12 WAP possibly due to slaking and collapse of soil particles by raindrops. Application of PM resulted in significantly lower BD than the unmanured plots. There was a significant interaction effect among tillage, PM and NPK fertiliser on soil physical properties. In plots treated with combined 20 Mg ha–1 PM (PM20) and 150kg N ha–1, the soil Pt of 55.6% and 57.2% obtained under CT and MT respectively at the end of the second year were significantly higher than those of the control plots (48.5% (CT) and 47.5% (MT)). In general, combined application of NPK and PM did not result in significant differences in CDR and Ks under MT and CT but the higher rate of PM (PM20) and NPK fertiliser under ZT significantly raised the CDR and reduced Ks by 20–43% in 2008 and 23–45% in 2009 relative to the unmanured plots. This implies disaggregation (higher CDR), which possibly resulted in creation of water-repellent properties causing lower Ks. Although Ks and CDR showed no significant relation with grain yield, BD was significantly related with maize grain yield with MT tending to produce ~23% and 20% higher maize grain yield than ZT and CT respectively under a typical arable surface soil BD. Therefore, integrated use of PM and NPK fertiliser is beneficial to soil physical qualities, especially under tillage management, but high quantities of PM should be avoided under ZT soil.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Nurhussen Mehammednur Seid ◽  
Birru Yitaferu ◽  
Kibebew Kibret ◽  
Feras Ziadat

Information about the spatial distribution of soil properties is necessary for natural resources modeling; however, the cost of soil surveys limits the development of high-resolution soil maps. The objective of this study was to provide an approach for predicting soil attributes. Topographic attributes and the normalized difference vegetation index (NDVI) were used to provide information about the spatial distribution of soil properties using clustering and statistical techniques for the 56 km2Gumara-Maksegnit watershed in Ethiopia. Multiple linear regression models implemented within classified subwatersheds explained 6–85% of the variations in soil depth, texture, organic matter, bulk density, pH, total nitrogen, available phosphorous, and stone content. The prediction model was favorably comparable with the interpolation using the inverse distance weighted algorithm. The use of satellite images improved the prediction. The soil depth prediction accuracy dropped gradually from 98% when 180 field observations were used to 65% using only 25 field observations. Soil attributes were predicted with acceptable accuracy even with a low density of observations (1-2 observations/2 km2). This is because the model utilizes topographic and satellite data to support the statistical prediction of soil properties between two observations. Hence, the use of DEM and remote sensing with minimum field data provides an alternative source of spatially continuous soil attributes.


2019 ◽  
Vol 11 (15) ◽  
pp. 87
Author(s):  
Ligia Maria Lucas Videira ◽  
Paulo Ricardo Teodoro Silva ◽  
Diego dos Santos Pereira ◽  
Rafael Montanari ◽  
Alan Rodrigo Panosso ◽  
...  

In no-tillage (NT) and minimum tillage (MT) areas, spatial variability of soil physical properties may affect crop yield. The aim of this study was to assess the spatial distribution of soil physical properties, as well as the yield components and grain yield of soybean (GY), based on the mapping of areas under soil conservation farming systems. We assessed yield components, GY and the physical properties of an Oxisol, under NT and MT using the t-student test, and geostatistics to assess spatial variability. The largest population of NT plants showed no spatial dependence and did not influence GY, but the components related to plant height and soil properties differed between systems. From a spatial standpoint, the kriging maps demonstrated that mass of one thousand grains (MOG), total porosity (TP) and soil bulk density (BD) influenced GY under NT, whereas TP1 exerted the most influence under high soil moisture conditions and MT. The maps make it possible to assess the spatial distribution of soil physical properties and the influence on GY, making them an important tool for more accurate production planning in soil conservation systems.


Sign in / Sign up

Export Citation Format

Share Document