scholarly journals Genetic improvement and population structure of the Nelore breed in Northern Brazil

2010 ◽  
Vol 45 (10) ◽  
pp. 1109-1116 ◽  
Author(s):  
Carlos Henrique Mendes Malhado ◽  
Paulo Luiz Souza Carneiro ◽  
Ana Claudia Mendes Malhado ◽  
Raimundo Martins Filho ◽  
Riccardo Bozzi ◽  
...  

The objective of this work was to evaluate the population structure and the genetic and phenotypic progress of Nelore cattle in Northern Brazil. Pedigree information concerning animals born between 1942 and 2006 were analyzed. Population structure was performed using the Endog program. Out of the 140,628 animals studied, 67.7, 14.52 and 3.18% had complete pedigree record of the first, second and third parental generation, respectively. Inbreeding and average relatedness coefficients were low: 0.2 and 0.13%, respectively. However, these parameters may have been underestimated, since information on pedigree was incomplete. The effective number of founders was 370 and the genetic contribution of 10, 50 and 448 most influent ancestors explained 13.2, 28 and 50% of the genetic variability in the population, respectively. The genetic variability for growth traits and population structure demonstrates high probability of increasing productivity through selective breeding. Moreover, management strategies to reduce the currently observed age at first calving and generation intervals are important for Nelore cattle genetic improvement.

2016 ◽  
Vol 56 (7) ◽  
pp. 1130 ◽  
Author(s):  
Navid Ghavi Hossein-Zadeh

The objective of this study was to use pedigree analysis to evaluate the population structure, genetic variability and inbreeding in Iranian buffaloes. The analysis was based on the pedigree information of 42 285 buffaloes born from 549 sires and 6376 dams within 1697 herds. Pedigree information used in this study was collected during 1976 to 2012 by the Animal Breeding Centre of Iran. The CFC program was applied to calculate pedigree statistics and genetic structure analysis of the Iranian buffaloes. Also, the INBUPGF90 program was used for calculating regular inbreeding coefficients for individuals in the pedigree. The analysis of pedigree indicated that inbreeding coefficient ranged from 0% to 31% with an average of 3.42% and the trend of inbreeding was significantly positive over the years (P < 0.0001). Average coancestry was increased in recent years and overall generation interval was 6.62 years in Iranian buffaloes. Founder genome equivalent, founder equivalent, effective number of founders and effective number of non-founders were increased from 1976 to 2002, but their values decreased from 2002 onwards. A designed mating system to avoid inbreeding may be applied to this population of buffalo to maintain genetic diversity.


2021 ◽  
Vol 73 (1) ◽  
pp. 231-238
Author(s):  
N.L. Ribeiro ◽  
G.R. Medeiros ◽  
G.V. Nascimento ◽  
J.K.G. Arandas ◽  
M.N. Ribeiro

ABSTRACT The objective of this research was to study the population structure of the Cattle Conservation Nucleos Curraleiro Pé Duro of the Instituto Nacional do Semiárido (NCP_INSA) based on pedigree data. Genealogical information from 338 animals registered in the period from 1991 to 2019 was used. The number of founding animals (Nf), the effective number of founders (fe), effective number of ancestors (fa), inbreeding coefficient (F), and average relatedness coefficient (AR), in addition to Fis, Fit and Fst were estimated. It was possible to identify ancestors up to the third generation, with an increase in information over the generations. Of the total pedigree information evaluated, 90.53% had the identification of the father and mother. The effective size of the population was smaller than those proposed by FAO, suggesting the need to redefine the herd management and genetic management plan strategies, promoting gene flow and breed expansion.


2017 ◽  
Vol 149 ◽  
pp. 128-133 ◽  
Author(s):  
E.A. Barros ◽  
L.H. de A. Brasil ◽  
J.P. Tejero ◽  
J.V. Delgado-Bermejo ◽  
M.N. Ribeiro

1998 ◽  
Vol 67 (2) ◽  
pp. 249-256 ◽  
Author(s):  
J. Sölkner ◽  
L. Filipcic ◽  
N. Hampshire

AbstractParameters based on probabilities of gene origin were used to evaluate the genetic variability of four Austrian cattle breeds. Effective numbers of founders, ancestors and remaining founder genomes showed that all four populations investigated are rather small genetically. Effective numbers of remaining founder genomes were 94 for Simmental, 41 for Braunvieh (Brown Swiss), 32 for Pinzgauer and 21 for Grauvieh (Grey cattle, a small mountain breed). As the value of 94 for Simmental was rather large in comparison with estimates from other populations in previous studies, the effect of population structure was investigated. A cosine measure of similarity based on differences in individual founder contributions to different subpopulations was defined and used for analysis. Subpopulations defined by regions were clearly more distinct for Simmental than for Braunvieh. The size of the cosine values depended on the method of calculating founder contributions and was overestimated when choosing the method not accounting for drift and bottlenecks (effective number of founders).


2010 ◽  
Vol 39 (12) ◽  
pp. 2640-2645 ◽  
Author(s):  
João Cruz Reis Filho ◽  
Paulo Sávio Lopes ◽  
Rui da Silva Verneque ◽  
Robledo de Almeida Torres ◽  
Roberto Luiz Teodoro ◽  
...  

The objective of the present study was to evaluate the genetic structure of Gyr cattle selected for milk production. Files of pedigree and production were composed of 27,610 animals. The ENDOG program was used for the calculation of individual inbreeding coefficient (F) and coefficient of average relatedness (AR), effective number of animals(Ne), effective number of founders (f e) and ancestors (f a), and generation interval (GI). Individual inbreeding coefficients and average relatedness in the population were 2.82% and 2.10%, respectively. It was observed a reduction in the effective number of animals, especially after publication of the results of the first progeny test. The estimated effective number of founders was 146 and 75 for the ancestrals. Out of those, only 28 ancestors accounted for the origin of 50% of the population genes. The average generation interval was 8.41 years and it was longer for males than for females. For maintaining genetic variability in future generations, it should be invested mating strategies that reduce inbreeding and which do not use massively only some high breeding value sires.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 522
Author(s):  
Régis Santos ◽  
Wendell Medeiros-Leal ◽  
Osman Crespo ◽  
Ana Novoa-Pabon ◽  
Mário Pinho

With the commercial fishery expansion to deeper waters, some vulnerable deep-sea species have been increasingly captured. To reduce the fishing impacts on these species, exploitation and management must be based on detailed and precise information about their biology. The common mora Mora moro has become the main deep-sea species caught by longliners in the Northeast Atlantic at depths between 600 and 1200 m. In the Azores, landings have more than doubled from the early 2000s to recent years. Despite its growing importance, its life history and population structure are poorly understood, and the current stock status has not been assessed. To better determine its distribution, biology, and long-term changes in abundance and size composition, this study analyzed a fishery-dependent and survey time series from the Azores. M. moro was found on mud and rock bottoms at depths below 300 m. A larger–deeper trend was observed, and females were larger and more abundant than males. The reproductive season took place from August to February. Abundance indices and mean sizes in the catch were marked by changes in fishing fleet operational behavior. M. moro is considered vulnerable to overfishing because it exhibits a long life span, a large size, slow growth, and a low natural mortality.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pattarapol Sumreddee ◽  
El Hamidi Hay ◽  
Sajjad Toghiani ◽  
Andrew Roberts ◽  
Samuel E. Aggrey ◽  
...  

Abstract Background Although inbreeding caused by the mating of animals related through a recent common ancestor is expected to have more harmful effects on phenotypes than ancient inbreeding (old inbreeding), estimating these effects requires a clear definition of recent (new) and ancient (old) inbreeding. Several methods have been proposed to classify inbreeding using pedigree and genomic data. Unfortunately, these methods are largely based on heuristic criteria such as the number of generations from a common ancestor or length of runs of homozygosity (ROH) segments. To mitigate these deficiencies, this study aimed to develop a method to classify pedigree and genomic inbreeding into recent and ancient classes based on a grid search algorithm driven by the assumption that new inbreeding tends to have a more pronounced detrimental effect on traits. The proposed method was tested using a cattle population characterized by a deep pedigree. Results Effects of recent and ancient inbreeding were assessed on four growth traits (birth, weaning and yearling weights and average daily gain). Thresholds to classify inbreeding into recent and ancient classes were trait-specific and varied across traits and sources of information. Using pedigree information, inbreeding generated in the last 10 to 11 generations was considered as recent. When genomic information (ROH) was used, thresholds ranged between four to seven generations, indicating, in part, the ability of ROH segments to characterize the harmful effects of inbreeding in shorter periods of time. Nevertheless, using the proposed classification method, the discrimination between new and old inbreeding was less robust when ROH segments were used compared to pedigree. Using several model comparison criteria, the proposed approach was generally better than existing methods. Recent inbreeding appeared to be more harmful across the growth traits analyzed. However, both new and old inbreeding were found to be associated with decreased yearling weight and average daily gain. Conclusions The proposed method provided a more objective quantitative approach for the classification of inbreeding. The proposed method detected a clear divergence in the effects of old and recent inbreeding using pedigree data and it was superior to existing methods for all analyzed traits. Using ROH data, the discrimination between old and recent inbreeding was less clear and the proposed method was superior to existing approaches for two out of the four analyzed traits. Deleterious effects of recent inbreeding were detected sooner (fewer generations) using genomic information than pedigree. Difference in the results using genomic and pedigree information could be due to the dissimilarity in the number of generations to a common ancestor. Additionally, the uncertainty associated with the identification of ROH segments and associated inbreeding could have an effect on the results. Potential biases in the estimation of inbreeding effects may occur when new and old inbreeding are discriminated based on arbitrary thresholds. To minimize the impact of inbreeding, mating designs should take the different inbreeding origins into consideration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morteza Bitaraf Sani ◽  
Javad Zare Harofte ◽  
Mohammad Hossein Banabazi ◽  
Saeid Esmaeilkhanian ◽  
Ali Shafei Naderi ◽  
...  

AbstractFor thousands of years, camels have produced meat, milk, and fiber in harsh desert conditions. For a sustainable development to provide protein resources from desert areas, it is necessary to pay attention to genetic improvement in camel breeding. By using genotyping-by-sequencing (GBS) method we produced over 14,500 genome wide markers to conduct a genome- wide association study (GWAS) for investigating the birth weight, daily gain, and body weight of 96 dromedaries in the Iranian central desert. A total of 99 SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.002). Genomic breeding values (GEBVs) were estimated with the BGLR package using (i) all 14,522 SNPs and (ii) the 99 SNPs by GWAS. Twenty-eight SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.001). Annotation of the genomic region (s) within ± 100 kb of the associated SNPs facilitated prediction of 36 candidate genes. The accuracy of GEBVs was more than 0.65 based on all 14,522 SNPs, but the regression coefficients for birth weight, daily gain, and body weight were 0.39, 0.20, and 0.23, respectively. Because of low sample size, the GEBVs were predicted using the associated SNPs from GWAS. The accuracy of GEBVs based on the 99 associated SNPs was 0.62, 0.82, and 0.57 for birth weight, daily gain, and body weight. This report is the first GWAS using GBS on dromedary camels and identifies markers associated with growth traits that could help to plan breeding program to genetic improvement. Further researches using larger sample size and collaboration of the camel farmers and more profound understanding will permit verification of the associated SNPs identified in this project. The preliminary results of study show that genomic selection could be the appropriate way to genetic improvement of body weight in dromedary camels, which is challenging due to a long generation interval, seasonal reproduction, and lack of records and pedigrees.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Bingru Zhao ◽  
Hanpeng Luo ◽  
Xixia Huang ◽  
Chen Wei ◽  
Jiang Di ◽  
...  

Abstract Background Genetic improvement of wool and growth traits is a major goal in the sheep industry, but their underlying genetic architecture remains elusive. To improve our understanding of these mechanisms, we conducted a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW). Results Our dataset comprised 7135 individuals with phenotype data, among which 1217 had high-density (HD) genotype data (n = 372,534). The genotypes of 707 of these animals were imputed from the Illumina Ovine single nucleotide polymorphism (SNP) 54 BeadChip to the HD Array. The heritability of these traits ranged from 0.05 (CVFD) to 0.36 (MFD), and between-trait genetic correlations ranged from − 0.44 (CN vs. LW) to 0.77 (GFW vs. LW). By integrating the GWAS signals with RNA-seq data from 500 samples (representing 87 tissue types from 16 animals), we detected tissues that were relevant to each of the six traits, e.g. liver, muscle and the gastrointestinal (GI) tract were the most relevant tissues for LW, and leukocytes and macrophages were the most relevant cells for CN. For the six traits, 54 quantitative trait loci (QTL) were identified covering 81 candidate genes on 21 ovine autosomes. Multiple candidate genes showed strong tissue-specific expression, e.g. BNC1 (associated with MFD) and CHRNB1 (LW) were specifically expressed in skin and muscle, respectively. By conducting phenome-wide association studies (PheWAS) in humans, we found that orthologues of several of these candidate genes were significantly (FDR < 0.05) associated with similar traits in humans, e.g. BNC1 was significantly associated with MFD in sheep and with hair colour in humans, and CHRNB1 was significantly associated with LW in sheep and with body mass index in humans. Conclusions Our findings provide novel insights into the biological and genetic mechanisms underlying wool and growth traits, and thus will contribute to the genetic improvement and gene mapping of complex traits in sheep.


Sign in / Sign up

Export Citation Format

Share Document