scholarly journals Soil organic matter in fire-affected pastures and in an Araucaria forest in South-Brazilian Leptosols

2012 ◽  
Vol 47 (5) ◽  
pp. 707-715 ◽  
Author(s):  
Mariana da Luz Potes ◽  
Deborah Pinheiro Dick ◽  
Graciele Sarante Santana ◽  
Michely Tomazi ◽  
Cimélio Bayer

The objective of this work was to evaluate the distribution pattern and composition of soil organic matter (SOM) and its physical pools of Leptosols periodically affected by fire over the last 100 years in South Brazil. Soil samples at 0-5, 5-10, and 10-15 cm depths were collected from the following environments: native pasture without burning in the last year and grazed with 0.5 livestock per hectare per year (1NB); native pasture without burning in the last 23 years and grazed with 2.0 livestock per hectare per year (23NB); and an Araucaria forest (AF). Physical fractionation was performed with the 0-5 and 5-10 cm soil layers. Soil C and N stocks were determined in the three depths and in the physical pools, and organic matter was characterized by infrared spectroscopy and thermogravimetry. The largest C stocks in all depths and physical pools were found under the AF. The 23NB environment showed the lowest soil C and N stocks at the 5-15 cm depth, which was related to the end of burning and to the higher grazing intensity. The SOM of the occluded light fraction showed a greater chemical recalcitrance in 1NB than in 23NB. Annual pasture burning does not affect soil C stocks up to 15 cm of depth.

Soil Research ◽  
1996 ◽  
Vol 34 (6) ◽  
pp. 891 ◽  
Author(s):  
AJ Gijsman

An area of native savanna on an Oxisol in the Eastern Plains of Colombia was opened and sown to various rotations of grass or grass-legume pasture with rice. After 4.5 years, the soil was sampled for studying the effect of land conversion on soil aggregation and on the distribution of total and particulate soil organic matter across the aggregate size classes. The size distribution of undisturbed aggregates did not vary among treatments. Five different methods were used to measure wet aggregate stability (WAS). The choice of method affected the WAS average across treatments as well as the differences among treatments. The only consistent observation was the lower WAS under monocropped rice compared with the other treatments. Inclusion of a legume in a pasture hardly affected aggregate stability. In contrast to the WAS measurements, which were carried out with soil aggregates of 1-2 mm, wet sieving of whole-soil samples revealed additional differences among treatments: large macroaggregates (>2 mm) proved less stable under those treatments that involved soil disturbance through ploughing and harvesting. Total soil C and N content did not vary among treatments, despite considerable differences in plant production levels. The C concentration, but not the N concentration, declined with decreasing aggregate size. The distribution of whole-soil C and N content across aggregate size classes depended more on the amount of soil in a certain size class than on the size class's C or N concentration. Those treatments that involved frequent soil disturbance had a smaller fraction of large macroaggregates (>2 mm) and, as a consequence, less C and N in the large macroaggregate fraction. The particulate organic matter (POM) fraction accounted for only 6.2-8.5% of total soil carbon. The small size of this pool makes it unlikely that POM can serve in these Oxisols for estimating the amount of soil organic matter with medium turnover rate, as suggested by others.


2019 ◽  
Author(s):  
Adam F. A. Pellegrini ◽  
Sarah E. Hobbie ◽  
Peter B. Reich ◽  
Ari Jumpponen ◽  
E. N. Jack Brookshire ◽  
...  

AbstractFires shape the biogeochemistry and functioning of many ecosystems, but fire frequencies are changing across large areas of the globe. Frequent fires can change soil carbon (C) and nitrogen (N) storage through both “top-down” pathways, by altering inputs through shifting plant composition and biomass, and “bottom-up” ones, by altering losses through decomposition and turnover of soil organic matter. However, the relative importance of these different pathways and the degree to which they regulate ecosystem responses to decades of changing fire frequencies is uncertain. Here, we sampled soils and plant communities in four North American and African sites spanning tropical savanna, temperate coniferous savanna, temperate broadleaf savanna, and temperate coniferous forest that each contained multiple plots repeatedly burned for 33-61 years and nearby plots that were protected from fire over the same period. The sites varied markedly in temperature, precipitation, species composition, fire history and soil chemistry; thus they represent a broad test for the generality of fire impacts on biogeochemical cycling. For all four sites, bulk soil C and N by were 25-180% higher in unburned vs. frequently burned plots, with greater soil losses occurring in areas with greater declines in tree cover and biomass inputs into soils. Fire reduced the activity of soil extracellular enzymes that hydrolyze labile C and N from soil organic matter by two- to ten-fold, whereas tree cover was the predominant control on the oxidation of recalcitrant C compounds. C-acquisition enzyme activity tended to decline with decreasing soil N, suggesting that N losses may contribute to limited decomposition, buffering systems against increased losses of soil C with fire. In conclusion, variability in how fire alters soil C and N across ecosystems can be explained partly by fire-driven changes in tree cover and biomass, but the slower turnover of organic matter we observed may offset some of the reduction of C inputs from plants after fire.


2012 ◽  
Vol 42 (11) ◽  
pp. 1953-1964 ◽  
Author(s):  
Irene Fernandez ◽  
Juan Gabriel Álvarez-González ◽  
Beatríz Carrasco ◽  
Ana Daría Ruíz-González ◽  
Ana Cabaneiro

Forest ecosystems can act as C sinks, thus absorbing a high percentage of atmospheric CO2. Appropriate silvicultural regimes can therefore be applied as useful tools in climate change mitigation strategies. The present study analyzed the temporal changes in the effects of thinning on soil organic matter (SOM) dynamics and on soil CO2 emissions in radiata pine ( Pinus radiata D. Don) forests. Soil C effluxes were monitored over a period of 2 years in thinned and unthinned plots. In addition, soil samples from the plots were analyzed by solid-state 13C-NMR to determine the post-thinning SOM composition and fresh soil samples were incubated under laboratory conditions to determine their biodegradability. The results indicate that the potential soil C mineralization largely depends on the proportion of alkyl-C and N-alkyl-C functional groups in the SOM and on the microbial accessibility of the recalcitrant organic pool. Soil CO2 effluxes varied widely between seasons and increased exponentially with soil heating. Thinning led to decreased soil respiration and attenuation of the seasonal fluctuations. These effects were observed for up to 20 months after thinning, although they disappeared thereafter. Thus, moderate thinning caused enduring changes to the SOM composition and appeared to have temporary effects on the C storage capacity of forest soils, which is a critical aspect under the current climatic change scenario.


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

<p>Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3°C), atmospheric CO<sub>2</sub>-concentration (eCO<sub>2</sub>: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO<sub>2</sub>: +3°C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, > 250 µm), micro-aggregates (miA, 63 µm – 250 µm) and free silt & clay (sc, < 63 µm). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of ρ = 1.6 g*cm<sup>-3</sup>, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt & clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO<sub>2</sub> and eT x eCO<sub>2 </sub>plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO<sub>2 </sub>treatment. Total soil C and N did not significantly change with treatments.  eCO<sub>2</sub> decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO<sub>2</sub> fumigation treatment. This significantly differed between size classes and density fractions (p < 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.    </p>


2019 ◽  
Vol 16 (6) ◽  
pp. 1225-1248 ◽  
Author(s):  
Andy D. Robertson ◽  
Keith Paustian ◽  
Stephen Ogle ◽  
Matthew D. Wallenstein ◽  
Emanuele Lugato ◽  
...  

Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical models have traditionally been simulated as immeasurable fluxes between conceptually defined pools. This greatly limits how empirical data can be used to improve model performance and reduce the uncertainty associated with their predictions of carbon (C) cycling. Recent advances in our understanding of the biogeochemical processes that govern SOM formation and persistence demand a new mathematical model with a structure built around key mechanisms and biogeochemically relevant pools. Here, we present one approach that aims to address this need. Our new model (MEMS v1.0) is developed from the Microbial Efficiency-Matrix Stabilization framework, which emphasizes the importance of linking the chemistry of organic matter inputs with efficiency of microbial processing and ultimately with the soil mineral matrix, when studying SOM formation and stabilization. Building on this framework, MEMS v1.0 is also capable of simulating the concept of C saturation and represents decomposition processes and mechanisms of physico-chemical stabilization to define SOM formation into four primary fractions. After describing the model in detail, we optimize four key parameters identified through a variance-based sensitivity analysis. Optimization employed soil fractionation data from 154 sites with diverse environmental conditions, directly equating mineral-associated organic matter and particulate organic matter fractions with corresponding model pools. Finally, model performance was evaluated using total topsoil (0–20 cm) C data from 8192 forest and grassland sites across Europe. Despite the relative simplicity of the model, it was able to accurately capture general trends in soil C stocks across extensive gradients of temperature, precipitation, annual C inputs and soil texture. The novel approach that MEMS v1.0 takes to simulate SOM dynamics has the potential to improve our forecasts of how soils respond to management and environmental perturbation. Ensuring these forecasts are accurate is key to effectively informing policy that can address the sustainability of ecosystem services and help mitigate climate change.


2019 ◽  
Vol 447 (1-2) ◽  
pp. 521-535
Author(s):  
Nina L. Friggens ◽  
Thomas J. Aspray ◽  
Thomas C. Parker ◽  
Jens-Arne Subke ◽  
Philip A. Wookey

Abstract Aims In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes. Methods We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR. Results Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees. Conclusions As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration.


Soil Research ◽  
2003 ◽  
Vol 41 (1) ◽  
pp. 95 ◽  
Author(s):  
D. Curtin ◽  
P. M. Fraser

In New Zealand, cereal straw has traditionally been burned to facilitate seedbed preparation for the succeeding crop. Because of concerns over the decline of organic matter and the associated deterioration in soil structure, farmers are interested in incorporating crop residues as a means of maintaining organic matter levels. In a 6-year trial on a Wakanui silt loam on the Canterbury Plains, we evaluated the effects of 3 straw management practices (i.e. straw incorporation, burning of straw, and straw removal) on total and labile soil organic matter. A fourth treatment was included to evaluate the local practice of including seed crops (grass and clover) in cereal rotations. The seed crops were grown every second year, the crop sequence being cereal–ryegrass–cereal–clover–cereal–clover. The rate of straw (wheat) decomposition was determined using a litter bag technique, with the bags being buried at a depth of 15 cm for intervals of up to 19 months. In the straw-incorporated treatment, about 25 t/ha of straw (~11 t C/ha) was returned to the soil during the trial. However, there was no significant effect (P > 0.05) of straw management treatments on total soil C (or N), or on labile organic matter pools, although there was a tendency for higher levels of mineralisable C and N where straw was incorporated. Measured straw decomposition rates were consistent with predictions of the Douglas-Rickman residue decomposition model. Under the relatively warm conditions of the Canterbury Plains (thermal time typically >4000 degree-days per year, calculated as the sum of daily degree-days above a base temperature of 0�C), about three-quarters of incorporated straw decomposed within a year. Of the 11 t C/ha of straw-C incorporated, we estimated that only about 1 t C/ha would remain in the soil at the time of sampling. An increase in soil C by this amount would not be detectable (total soil C was about 55 t/ha in the upper 15 cm). Growing seed crops every second year increased several of the labile organic pools (mineralisable C and N, light fraction C and N, microbial biomass) in the 0–7.5 and 7.5 cm soil layers and this may have beneficial effects (e.g. improved N supply) on the succeeding cereal crop. However, the seed crops did not significantly increase total soil organic matter within the 6 years.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6897 ◽  
Author(s):  
Yujuan Zhang ◽  
Shiming Tang ◽  
Shu Xie ◽  
Kesi Liu ◽  
Jinsheng Li ◽  
...  

Background Patchy vegetation is a very common phenomenon due to long-term overgrazing in degraded steppe grasslands, which results in substantial uncertainty associated with soil carbon (C) and nitrogen (N) dynamics because of changes in the amount of litter accumulation and nutrition input into soil. Methods We investigated soil C and N stocks beneath three types of monodominant species patches according to community dominance. Stipa krylovii patches, Artemisia frigida patches, and Potentilla acaulis patches represent better to worse vegetation conditions in a grassland in northern China. Results The results revealed that the soil C stock (0–40 cm) changed significantly, from 84.7 to 95.7 Mg ha−1, and that the soil organic carbon content (0–10 cm) and microbial biomass carbon (0–10 and 10–20 cm) varied remarkably among the different monodominant species communities (P < 0.05). However, soil total nitrogen and microbial biomass nitrogen showed no significant differences among different plant patches in the top 0–20 cm of topsoil. The soil C stocks under the P. acaulis and S. krylovii patches were greater than that under the A. frigida patch. Our study implies that accurate estimates of soil C and N storage in degenerated grassland require integrated analyses of the concurrent effects of differences in plant community composition.


Sign in / Sign up

Export Citation Format

Share Document