scholarly journals Popping expansion and yield responses of popcorn cultivars under different row spacings and plant populations

2013 ◽  
Vol 48 (12) ◽  
pp. 1538-1545
Author(s):  
José Antonio de Souza Rossato Junior ◽  
Disnei Amélio Cazetta ◽  
José Carlos Barbosa ◽  
Domingos Fornasieri Filho

The objective of this work was to evaluate the agronomic traits and the popping expansion index of three Brazilian popcorn cultivars under different row spacings and plant populations. The trials were performed during two crop seasons, under field conditions. The experimental design used was a randomized complete block, in a split-split plot, with 27 treatments and four replicates. Treatments were represented in a triple factorial arrangement: three row spacings (0.40, 0.60, and 0.80 m), three plant populations (40,000, 60,000, and 80,000 plants per hectare), and three popcorn cultivars (IAC-TC 01, IAC 12, and Zelia). The increase in plant population causes a reduction in the number of grains per ear, lower prolificacy, and grain weight loss. Cultivar grain yield is affected by row spacing and popcorn plant population. Cultivar IAC 12 shows highest grain yield under row spacings of 0.40 and 0.60 m and plant population between 60,000 and 80,000 plants per hectare. The popping expansion index is not affected by row spacing or plant population.

2020 ◽  
Vol 71 (3) ◽  
pp. 219 ◽  
Author(s):  
B. W. Dunn ◽  
T. S. Dunn ◽  
J. H. Mitchell ◽  
J. Brinkhoff

Objective guidelines about plant population are essential to ensure that yield potential of rice grain is not compromised. Drill-sowing of rice is increasing in popularity in many rice-growing regions of the world in response to a requirement for increased water productivity, but little information is available on row-spacing widths required to maximise grain yield potential. This research investigated the impacts of plant population on grain yield and yield components for aerial- and drill-sown rice, and the effects of row-spacing width for drill-sown rice grown in a temperate environment. Ten aerial-sown and five drill-sown experiments were conducted in south-eastern Australia over three seasons using four semi-dwarf rice varieties. Plant populations ranged from 7 to 396 plants m–2. Plant populations as low as 30 plants m–2 were able to achieve grain yields >12 t ha–1 but only when the plants were uniformly distributed. At a population of ~100 plants m–2, the impact of plant-stand distribution was negligible. Grain yield was maintained across a large range of plant populations, mainly through compensatory effects of more tillers per plant and more grains per panicle at lower plant populations. For aerial-sown rice, maximum grain yield (up to 14.9 t ha–1) was always achieved with a minimum plant population of 100 plants m–2, and likewise for drill-sown rice provided the row spacing was ≤27 cm. At equivalent plant populations, 36-cm row spacing produced lower grain yield than narrower row spacings. When large gaps existed between plants within the rows, neighbouring plants could not compensate for the gap at the wider 36-cm row spacing, and grain yield was reduced. A practical optimal plant population of 100–200 plants m–2 was found to be suitable for the semi-dwarf varieties used in this study for both aerial- and drill-sowing methods.


2011 ◽  
Vol 91 (1) ◽  
pp. 37-48 ◽  
Author(s):  
M. Cogliatti ◽  
F. Bongiorno ◽  
H. Dalla Valle ◽  
W J Rogers

Fifty-seven accessions of canaryseed (47 populations and 10 cultivars) from 19 countries were evaluated for agronomic traits in four field trials sown over 3 yr in the province of Buenos Aires, Argentina. Genetic variation was found for all traits scored: grain yield and its components (grain weight, grain number per square meter, grain number per head and head number per square meter), harvest index, percent lodging, and phenological characters (emergence to heading, emergence to harvest maturity and heading to harvest maturity). Although genotype × environment interaction was observed for all traits, the additive differences between accessions were sufficient to enable promising breeding materials to be identified. Accessions superior in performance to the local Argentinean population, which in general gave values close to the overall mean of the accessions evaluated, were identified. For example, a population of Moroccan origin gave good yield associated with elevated values of the highly heritable character grain weight, rather than with the more commonly observed grain number per square meter. This population was also of relatively short stature and resistant to lodging, and, although it performed best when sown within the normal sowing date, tolerated late sowing fairly well. Other accessions were also observed with high grain weight, a useful characteristic in itself, since large grains are desirable from a quality point of view. Regarding phenology, the accessions showed a range of 160 degree days (8 calendar days in our conditions) in maturity, which, while not large in magnitude, may be of some utility in crop rotation management. Some accessions were well adapted to late sowing. Grain yield in general was strongly correlated with grain number per square meter. Principal components analysis (PCA) carried out for all characteristics provided indications of accessions combining useful characteristics and identified three components that explained approximately 70% of the phenotypic variation. Furthermore, a second PCA plus regression showed that approximately 60% of the variation in grain yield could be explained by a component associated with harvest index and grain number per square meter. Pointers were provided to possible future breeding targets.Key words: Phalaris canariensis, canaryseed, accessions, yield, phenology, genetics, breeding


2021 ◽  
Vol 37 ◽  
pp. e37042
Author(s):  
Marcelo De Almeida Silva ◽  
Ana Carolina De Santana Soares ◽  
Melina Rodrigues Alves Carnietto ◽  
Alexandrius De Moraes Barbosa

Studies addressing the interaction of different spatial arrangement in soybean are needed in order to achieve management that leads to higher grain yield associated with rational seed use. The objective of this work was to evaluate the yield components and productivity of an undetermined growth type soybean as a function of different row spacing and plant densities. The treatments consisted of three row spaces (0.25, 0.35 and 0.45 m) and three plant population densities (30, 40 and 50 plants/m²). There was no interaction of row spaces and plant population on soybean yield. Regarding the overall spacing average, the grain yield of the population of 30/m² plants was higher than the productivity of the populations of 40 and 50/m² plants. The largest populations reduce plant sizes due to greater competition between plants. In addition, smaller populations promote higher individual plant yields due to the increase components of the production. This characteristic is defined as the ability of the plant to change its morphology and yield components in order to adapt to the conditions imposed by the spatial arrangement.


1970 ◽  
Vol 34 (1) ◽  
pp. 33-39 ◽  
Author(s):  
MAT Sohel ◽  
MAB Siddique ◽  
M Asaduzzaman ◽  
MN Alam ◽  
MM Karim

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh from July to December 2004 to evaluate the effect of hill spacing on the performance of BRRI dhan40 and BRRI dhan41 as Transplant aman crop. The experiment consisted of five hill spacings viz., 5cm. 10cm, 15 cm, and 25 cm where row to row spacing of 25 cm was kept constant for all treatments. The experiment was laid out in randomized complete block design with four replications. The 25 cm x 5 cm hill spacing produced the tallest plant, highest total number of tillers/hill, bearing tillers/hill lowest number of non-hearing tillers/hill, grain yield and harvest index, while 25 cm x 5 cm hill spacing produced the highest number of sterile spikelets/panicle, straw yield and biological yield. BRRI dhan41 produced higher grain yield (4.7 t/ha) which was the contribution of higher number of grains/panicle and heavier grain weight. Lower yield (4.51 t/ha) was recorded in BRRI dhan40.Key Words: Varietal performance; T. aman rice; hill density.DOI: 10.3329/bjar.v34i1.5750Bangladesh J. Agril. Res. 34(1) : 33-39, March 2009


1962 ◽  
Vol 2 (4) ◽  
pp. 54 ◽  
Author(s):  
LJ Phillips ◽  
MJT Norman

In 1957-58 and 1958-59, Virginia Bunch and Natal Common peanuts were sown on Tippers clay loam at Katherine, N.T., in a multifactorial experiment at two inter-row spacings (2 ft and 3 ft), four plant populations (10, 20, 40 and 80 thousand per acre) and two dates. In 1960-61, Natal Common only was sown at the same inter-row spacings, at two dates, and at populations of 10, 20, 30 and 40 thousand per acre. Over two seasons, the yield of Virginia Bunch kernels was not significantly influenced by variation in population, though the yield of hay was 42 per cent higher at 80,000 plants per acre than at 10,000 plants per acre. Kernel yields from 2 f t rows were 14 per cent higher than from 3 f t rows. In the first two seasons, the yield of Natal Common kernels was lower at 80,000 plants per acre than at 40,000 plants per acre. Over three seasons, maximum kernel and h g yields were achieved at 40,000 plants per acre ; the kernel yield at this population was 35 per cent greater than at 10,000 plants per acre. With early-planted Natal Common, 2.ft rows gave an 11 per cent higher yield of kernels than 3 f t rows, but with later planting there was no significant effect of inter-row spacing. The optimum economic seeding rates were estimated approximately as 30 lb an acre for Virginia Bunch and 45 lb an acre for Natal Common.


2020 ◽  
Vol 112 (4) ◽  
pp. 2456-2465 ◽  
Author(s):  
Brad J. Bernhard ◽  
Frederick E. Below

1976 ◽  
Vol 16 (83) ◽  
pp. 926 ◽  
Author(s):  
WL Felton

An experiment was done to determine the reduction in yield attributable to weed competition when soybeans were grown in 25,50,75 and 100 cm rows and within-row densities of 10, 20 and 40 plants m-1. There was no effect of weeds on yield when soybeans were grown in 25 cm rows but a 20 per cent decrease with 50 cm rows, 26 per cent with 75 cm rows and 37 per cent with 100 cm rows. Within-row density had no effect but there was a trend towards an interaction between within-row density and the presence or absence of weeds. Narrow rows and higher within-row densities increased the height of the bottom pod, lodging and the number of pods m-2 but decreased stem diameter, number of pods per plant and the yield per plant. Narrow rows decreased yield per pod and seeds per pod. There was a trend, which was not significant (P < 0.05), towards reduced yield per pod and seeds per pod with higher within-row densities. Weed competition reduced stem diameter, pods per plant, pods m-2 and yield per plant. Weeds had no effect on the height of the bottom pod, yield per pod and seeds per pod. Soybean grain weight was not changed by row spacing, row density or weed competition.


2006 ◽  
Vol 57 (2) ◽  
pp. 227 ◽  
Author(s):  
Daniel F. Calderini ◽  
M. P. Reynolds ◽  
G. A. Slafer

Source limitation during grain filling is important for both management and breeding strategies of grain crops. There is little information on the sensitivity of grain weight of temperate cereals to variations in source–sink ratios, and no studies are available on the comparative behaviour of temperate cereals growing together in the same experiment. The objective of the current study was to evaluate, under field conditions, the response of grain weight to different source–sink ratios during grain filling in high-yielding cultivars of bread wheat, durum wheat, and triticale at 2 contrasting locations. Two experiments were carried out at C. Obregon and El Batan in Mexico. In each location, 6 genotypes (2 bread wheat, 2 durum wheat, 2 triticale) were evaluated. A week after anthesis, 2 source–sink (control and halved spikes) treatments were imposed. Location and genotype significantly (P < 0.01) affected grain yield and components. Significant grain weight increases (P < 0.05) were found only in 2 cases in El Batan. The highest response of 17% was found in triticale, with less than 10% in most of the other genotypes. The effect of genotype and location is discussed.


1987 ◽  
Vol 23 (3) ◽  
pp. 335-347 ◽  
Author(s):  
M. J. Jones

SUMMARYGeneral mathematical relations between yield parameters, plant populations and rainfall were developed for an indigenous sorghum from the results of 28 population/row spacing trials conducted at four sites over five seasons. Populations maximizing yield increased from 25 000 to 69 000 plants ha−1 over the rainfall range 200–700 mm (pre-planting to harvest total). Tillering partly compensated for low populations but yields from 10000 plants ha−1 at 300 and 600 mm rainfall were only 80 and 61% of potential maximum, respectively. Row spacing at constant population affected tiller numbers and eventual panicle weights but not panicle numbers, and any yield differences were unrelated to rainfall.


Sign in / Sign up

Export Citation Format

Share Document