scholarly journals Effects of weed "Reestablishment" after hoeing on corn yields

2010 ◽  
Vol 28 (2) ◽  
pp. 281-291 ◽  
Author(s):  
P.S.L. Silva ◽  
A.C. Oliveira ◽  
O.F. Oliveira ◽  
F.C.L. Freitas ◽  
T.S. Santos

Some growers and researchers sustain the idea that regrowth or root setting of some weeds may occur after hoeing, with detrimental effects over corn. The objective of this study was to evaluate the effects of weed removal from the field, removal after each hoeing, and corn intercropped with gliricidia on weed control and corn yield values. The experimental design consisted of blocks with split-plots and six replicates. Cultivars AG 1051 and BM 2022, planted in the plots, were submitted to the following treatments: no hoeing, two hoeings (at 20 and 40 days after planting), and intercropped with gliricidia. The hoed plots were either submitted to weed removal after the first, second, or both hoeings, or remained without weed removal. In the intercropped treatment, gliricidia was sown by broadcasting at corn planting between the corn rows, at a density of 15 seeds m-2. Twenty-five weed species occurred in the experiment; the most frequent was Digitaria sanguinalis (family Poaceae). The weed control methods tested had similar effects on the cultivars, which were not different from one another with respect to the evaluated traits, except for one-hundred-kernel weight, with cultivar AG 1051 being superior. Weed removal did not influence green corn yield or grain yield. However, the number of kernels/ear was higher in plots where weeds were removed in relation to plots without weed removal, suggesting that weed removal might be beneficial to corn. Besides, a higher dry matter weight was obtained for the above-ground part of weeds removed from the field after the first and second hoeings than the weight of weeds removed after the second hoeing only which, in turn, was higher than the weight of weeds removed after the first hoeing only. Green ear yield, grain yield, and dry matter of the above-ground part of the weeds did not show differences in hoed plots and were superior to the non-weeded plots and the intercropped plots, which were not different from each other; therefore, intercropping with gliricidia did not improve corn yield values.

2011 ◽  
Vol 29 (4) ◽  
pp. 793-802 ◽  
Author(s):  
P.S.L Silva ◽  
P.I.B Silva ◽  
K.M.B Silva ◽  
V.R Oliveira ◽  
F.S.T Pontes Filho

Although labor is intensive, evaluating the growth of crops may allow a better understanding of crop performance, including the reasons why certain cultivars can compete better with weeds. This study aims at evaluating growth, green ear yield, and grain yield in corn when in competition with weeds. Cultivars AG 1051 and BRS 106 were grown with (two hoeings, at 20 and 40 days after sowing) or without weed control. In order to evaluate crop growth, six collections of the above-ground part and the root system of corn were performed, every 15 days, with the first collection made 30 days after sowing. A randomized complete block design was adopted, with split-split plots (weed control in plots, cultivars in subplots, and collections in sub-subplots) and ten replicates. Eighteen weed species were found in the experiment area. Increased values of corn leaf area, above-ground part and root system, due to plant age function, were smaller in non-hoed plots than in hoed plots and were dependent upon cultivar. The lack of weed control increased dry matter of weeds aboveground part and decreased green ear yield and grain yield. Cultivar AG 1051 had higher increases in leaf area, above-ground part of the plant and root system, due to plant age function, and controlled weeds better than cultivar BRS 106. In addition, cultivar AG 1051 was superior to other cultivars with respect to most traits used for green corn yield and grain yield assessment.


2009 ◽  
Vol 27 (1) ◽  
pp. 105-112 ◽  
Author(s):  
P.S.L. Silva ◽  
T.M.S. Cunha ◽  
R.C. Oliveira ◽  
K.M.B. Silva ◽  
O.F. Oliveira

A reduction in herbicide use is one of modern agriculture's main interests and several alternatives are being investigated with this objective, including intercropping. Gliricídia (Gliricidia sepium) mulch has no allelopathic effect on corn or beans but significantly decreased the population of some weed species. The objective of this study was to evaluate green ear and grain yield in corn cultivars as a response to weed control achieved via intercropping with gliricidia. A completely randomized block design with five replicates and split-plots was used. Cultivars AG 1051, AG 2060, BRS 2020, and PL 6880 (assigned to plots) were submitted to the following treatments: no hoeing, hoeing (performed at 20 and 40 days after sowing the corn), and corn intercropped with gliricidia. Gliricidia was grown in a transplanting system to ensure uniform germination and fast establishment in the field. Seeding was made in 200-cell trays with one seed per cell (35 mL volume). The plants emerged two to three days after sowing and were transplanted to a permanent site two to three days after emergence. Corn was sown on the same day gliricidia was transplanted. Sixteen weed species occurred at different frequencies, with uneven distribution in the experimental area. Cultivars AG 1051 and AG 2060 were the best with reference to most characteristics employed to evaluate green corn yield. Cultivar AG 1051 provided the highest grain yield. The highest green ear yield and grain yield values were obtained with hoeing. However, the fact that intercropped plots showed intermediate yield between the values obtained for hoed and non-hoed plots indicates that gliricidia was beneficial to corn, and exerted a certain level of weed control.


2014 ◽  
Vol 32 (1) ◽  
pp. 51-59 ◽  
Author(s):  
L.B. Tavella ◽  
P.S.L. Silva ◽  
V.R. Oliveira ◽  
P.L.O. Fernandes ◽  
R.P. Sousa

The objectives of this study were to evaluate baby corn yield, green corn yield, and grain yield in corn cultivar BM 3061, with weed control achieved via a combination of hoeing and intercropping with gliricidia, and determine how sample size influences weed growth evaluation accuracy. A randomized block design with ten replicates was used. The cultivar was submitted to the following treatments: A = hoeings at 20 and 40 days after corn sowing (DACS), B = hoeing at 20 DACS + gliricidia sowing after hoeing, C = gliricidia sowing together with corn sowing + hoeing at 40 DACS, D = gliricidia sowing together with corn sowing, and E = no hoeing. Gliricidia was sown at a density of 30 viable seeds m-2. After harvesting the mature ears, the area of each plot was divided into eight sampling units measuring 1.2 m² each to evaluate weed growth (above-ground dry biomass). Treatment A provided the highest baby corn, green corn, and grain yields. Treatment B did not differ from treatment A with respect to the yield values for the three products, and was equivalent to treatment C for green corn yield, but was superior to C with regard to baby corn weight and grain yield. Treatments D and E provided similar yields and were inferior to the other treatments. Therefore, treatment B is a promising one. The relation between coefficient of experimental variation (CV) and sample size (S) to evaluate growth of the above-ground part of the weeds was given by the equation CV = 37.57 S-0.15, i.e., CV decreased as S increased. The optimal sample size indicated by this equation was 4.3 m².


2013 ◽  
Vol 31 (3) ◽  
pp. 559-567 ◽  
Author(s):  
P.S.L. Silva ◽  
P.I.B. Silva ◽  
V.R. Oliveira ◽  
G.L. Barros ◽  
A.L. Monteiro

Gliricidia (Gliricidia sepium) seedlings are usually beneficial to corn crops when planted between corn rows. The objective of this work was to assess the effects of corn intercropped with gliricidia and "sabiá" (Mimosa caesalpiniifolia), a species native to the Brazilian northeastern region, on weed control and corn green ear and grain yields. The experiment was carried out at Estação Experimental da Universidade Federal Rural do Semi-Árido - UFERSA (Mossoró, State of Rio Grande do Norte, Brazil). The experimental design consisted of randomized complete blocks (multifactorial design) with five replications, arranged in split-plots. The plots consisted of corn cultivars AG1051 and BM 2022; subplot treatments (six) were no-hoeing, twice-hoeing (at 20 and 40 days after sowing) and intercropping with gliricidia and "sabiá", either directly sown or transplanted, simultaneously with corn sowing. The intercropped leguminous plants were spaced 0.40 m from each other, and directly seeded or transplanted (30-day-old seedlings) in between two 1 m-spaced corn rows. Twenty three weed species were identified during the experiment. Gliricidia seedlings were superior to "sabiá" seedlings with regard to plant height and survival rate. The highest corn green ear and grain yields were found for twice-hoed subplots, while the lowest yield was found for no-hoed or intercropped subplots. However, grain yield values in intercropped treatments did not differ from grain yield values in hoed plots. In addition, marketable husked green ear mean weights did not differ between twice-hoed subplots and subplots directly seeded with gliricidia and "sabiá". Such results indicated that corn benefited from the intercropping system, but intercropping with gliricidia and "sabiá" transplanted resulted in lower benefits than with the direct sowing of those species.


2009 ◽  
Vol 27 (spe) ◽  
pp. 967-975 ◽  
Author(s):  
E.L.R Linhares ◽  
P.S.L Silva ◽  
O.F Oliveira ◽  
F.H.T Oliveira ◽  
S.B Torres

Reduced use of herbicides that cause environmental pollution problems is of great interest in modern agriculture. Soil mulching with gliricidia (Gliricidia sepium) branches does not have an allelopathic effect on corn, but decreases weed populations. The objective of this study was to evaluate the effects of gliricidia planting density, when grown as an intercrop, on weed control and corn yield parameters. A randomized block design with split-plots and ten replicates was adopted. Corn cultivars AG 1051 and BM 3061 were grown without hoeing, with two hoes (at 24 and 44 days after planting), and intercropped with gliricidia (planted simultaneously with corn, between crop rows, using two seedlings/pit, spaced at 30, 40, or 50 cm). Twenty-one weed species were found in the experimental area. Increased gliricidia planting density reduced weed biomass, but no difference was found between weed biomass in the intercrop and weed biomass in non-hoed corn. Gliricidia intercropped with corn, planted at a row spacing of 30 cm, did not significantly differ from hoed corn in most characteristics considered to evaluate green corn yield, although mean values were smaller. As to the number and weight of marketable green ears, reductions of 5% and 13%, respectively, were observed. Intercropping caused a 17% reduction in grain yield, reducing the losses (36%) observed in non-hoed corn by more than 50%. The highest green ear yield and grain yield values were obtained with two hoeings, while the lowest values were observed for non-hoed corn. The cultivars did not differ regarding green ear yield and grain yield.


1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


2004 ◽  
Vol 52 (2) ◽  
pp. 199-203 ◽  
Author(s):  
G. Singh ◽  
R. S. Jolly

Two field experiments were conducted during the kharif (rainy) season of 1999 and 2000 on a loamy sand soil to study the effect of various pre- and post-emergence herbicides on the weed infestation and grain yield of soybean. The presence of weeds in the weedy control plots resulted in 58.8 and 58.1% reduction in the grain yield in the two years compared to two hand weedings (HW) at 30 and 45 days after sowing (DAS), which gave grain yields of 1326 and 2029 kg ha-1. None of the herbicides was significantly superior to the two hand weedings treatment in influencing the grain yield. However, the pre-emergence application of 0.75 kg ha-1 S-metolachlor, and 0.5 kg ha-1 pendimethalin (pre-emergence) + HW 30 DAS were at par or numerically superior to this treatment. There was a good negative correlation between the weed dry matter at harvest and the grain yield of soybean, which showed that effective weed control is necessary for obtaining higher yields of soybean.


2010 ◽  
Vol 28 (1) ◽  
pp. 77-85 ◽  
Author(s):  
P.S.L. Silva ◽  
K.M.B. Silva ◽  
P.I.B. Silva ◽  
V.R. Oliveira ◽  
J.L.B. Ferreira

The reduction in herbicide use is one of the greatest interests for modern agriculture and several alternatives are being investigated with this objective, including the adoption of cultivars that suppress weeds. The objective of this study was to verify if maize cultivars develop differently, in competition with weeds, to produce green ears and grain. Randomized complete block design was used, with split-plots and five replications. Cultivars DKB 390, DKB 466, DKB 350, AG 7000, AG 7575 and Master, were evaluated in the plots, without weeding and two weedings (at 22 and 41 days after sowing) in sub plots. Twenty-one species were identified in the experimental area, the most frequent being Gramineae (Poaceae), Euphorbiaceae, Leguminosae (Fabaceae) and Convolvulaceae species. There was no difference in the dry biomass above-ground part of the weeds in the plots of the evaluated cultivars. The cultivars behaved similarly in treatments with or without hoeing, except for plant height and ear height evaluations. Without hoeing, plant height increased in cultivar DKB 390, while plant height and ear height decreased in cultivar AG 7575. In the other cultivars, these traits did not change under weed control. The presence of weeds decreased the values of all traits employed to assess green corn yield, with the exception of the total number of green ears and grain yield.


1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


2004 ◽  
Vol 18 (3) ◽  
pp. 835-840 ◽  
Author(s):  
Krishna N. Reddy ◽  
Clifford H. Koger

A 2-yr field study was conducted from 2002 to 2003 on a Dundee silt loam soil at the Southern Weed Science Research Unit Farm, Stoneville, MS (33°26′N latitude), to examine the effects of hairy vetch cover crop (hairy vetch killed at corn planting [HV-K], hairy vetch killed in a 38-cm-wide band centered over the crop row at corn planting [HV-B], hairy vetch left alive [HV-L], and no hairy vetch [NHV]) and glyphosate postemergence (broadcast, banded, and no herbicide) application on weed control and yield in glyphosate-resistant corn. Two applications of glyphosate at 0.84 kg ae/ha were applied 3 and 5 wk after planting (WAP) corn. Hairy vetch dry biomass was higher in HV-L (4,420 kg/ha) and HV-B (4,180 kg/ha) than in HV-K (1,960 kg/ha) plots at 7 WAP. Hairy vetch reduced densities of pitted morningglory, prickly sida, and yellow nutsedge in HV-B and HV-L compared with NHV plots, but hairy vetch had no effect on densities of barnyardgrass, johnsongrass, and large crabgrass at 7 WAP regardless of desiccation. Total weed dry biomass at 7 WAP was lower in HV-B and HV-L than in HV-K and NHV plots. Corn yield was higher in HV-K (10,280 kg/ha) than in HV-B (9,440 kg/ha) and HV-L (9,100 kg/ha), and yields were similar between HV-K and NHV (9,960 kg/ha). Glyphosate applied broadcast resulted in the highest corn yield (11,300 kg/ha) compared with a banded application (10,160 kg/ha). These findings indicate that hairy vetch cover crop has the potential for reducing the density of certain weed species in glyphosate-resistant corn production systems; however, optimum weed control and higher yield were obtained when glyphosate was used.


Sign in / Sign up

Export Citation Format

Share Document