scholarly journals Antifungal susceptibility of Candida albicans isolated from oral mucosa of patients with cancer

1999 ◽  
Vol 13 (3) ◽  
pp. 219-223 ◽  
Author(s):  
Lino João da COSTA ◽  
Esther Goldenberg BIRMAN ◽  
Sidney Hartz ALVES ◽  
Arlete Emily CURY

The increasing number of oral infections due to opportunistic fungi in immunocompromised patients, needs a new evaluation of the drugs in use. The susceptibility in vitro of Candida albicans strains from the oral mucosa of cancer patients to amphotericin B, ketoconazole, miconazole, fluconazole and itraconazole were evaluated. A dilution technique in YNB agar or subculture on Sabouraud agar was utilised for MIC or MFC determinations. With this methodology, the best fungicidal drug for C.albicans collected from the oral mucosa of 40 cancer patients, divided in two groups: one treated by radiotherapy and the other not, the best results were obtained with amphotericin B, presenting low values of MIC compared to azoles and MFC values. However it is important to take into consideration the utilisation in vivo of this polyenic antibiotic and the possible toxic levels necessary to achieve good results. The coexistence of other fungi and the local conditions must also be pondered with these patients, who are mostly undergoing radiotherapy. In order to achieve better results without undesirable consequences, higher levels of MIC are expected with the daily clinical use of new drugs.

Author(s):  
Abirami Lakshmy Jayachandran ◽  
Radhika Katragadda ◽  
Ravinder Thyagarajan ◽  
Leela Vajravelu ◽  
Suganthi Manikesi ◽  
...  

Oropharyngeal candidiasis is one of the common manifestations seen in cancer patients on cytotoxic therapy and invasion into deeper tissues can occur if not treated promptly. Emergence of antifungal drug resistance is of serious concern owing to the associated morbidity and mortality. The present study aims at evaluation of clinicomycological association and antifungal drug susceptibility among the 180 recruited patients with cancer on chemotherapy and/or radiotherapy with signs or symptoms suggestive of oral candidiasis. Speciation and antifungal susceptibility was done by Microbroth dilution method for fluconazole, Itraconazole, and Amphotericin B as per standard microbiological techniques. Chi-square test was used for statistical analysis (p<0.05was considered statistically significant).Candida albicanswas the predominant species isolated (94) (58%) followed byCandida tropicalis(34) (20.9%). Fluconazole and Itraconazole showed an overall resistance rate of 14% and 14.8%, respectively. All the isolates were susceptible to Amphotericin B. There was a significant association between the presence of dry mouth and isolation ofCandida(p<0.001). Such clinicomicrobiological associations can help in associating certain symptoms with the isolation ofCandida. Species level identification with in vitro antifungal susceptibility pattern is essential to choose the appropriate drug and to predict the outcome of therapy.


1996 ◽  
Vol 40 (9) ◽  
pp. 1998-2003 ◽  
Author(s):  
J L Rodríguez-Tudela ◽  
J Berenguer ◽  
J V Martínez-Suárez ◽  
R Sanchez

The National Committee for Clinical Laboratory Standards has proposed a reference broth macrodilution method for in vitro antifungal susceptibility testing of yeasts (the M27-P method). This method is cumbersome and time-consuming and includes MIC endpoint determination by visual and subjective inspection of growth inhibition after 48 h of incubation. An alternative microdilution procedure was compared with the M27-P method for determination of the amphotericin B, flucytosine, and fluconazole susceptibilities of 8 American Type Culture Collection strains (6 of them were quality control or reference strains) and 50 clinical isolates of candida albicans. This microdilution method uses as culture medium RPMI 1640 supplemented with 18 g of glucose per liter (RPMI-2% glucose). Preparation of drugs, basal medium, and inocula was done by following the recommendations of the National Committee for Clinical Laboratory Standards. The MIC endpoint was calculated objectively from the turbidimetric data read at 24 h. Increased growth of C. albicans in RPMI-2% glucose and its spectrophotometric reading allowed for the rapid (24 h) and objective calculation of MIC endpoints compared with previous microdilution methods with standard RPMI 1640. Nevertheless, good agreement was shown between the M27-P method and this microdilution test. The MICs obtained for the quality control or reference strains by the microdilution method were in the ranges published for those strains. For clinical isolates, the percentages of agreement were 100% for amphotericin B and fluconazole and 98.1% for flucytosine. These data suggest that this microdilution method may serve as a less subjective and more rapid alternative to the M27-P method for antifungal susceptibility testing of yeasts.


2003 ◽  
Vol 47 (8) ◽  
pp. 2404-2412 ◽  
Author(s):  
Dominique Sanglard ◽  
Françoise Ischer ◽  
Tania Parkinson ◽  
Derek Falconer ◽  
Jacques Bille

ABSTRACT The role of sterol mutations in the resistance of Candida albicans to antifungal agents has not been thoroughly investigated. Previous work reported that clinical C. albicans strains resistant to both azole antifungals and amphotericin B were defective in ERG3, a gene encoding sterol Δ5,6-desaturase. It is also believed that a deletion of the lanosterol 14α-demethylase gene, ERG11, is possible only under aerobic conditions when ERG3 is not functional. We tested these hypotheses by creating mutants by targeted deletion of the ERG3 and ERG11 genes and subjecting those mutants to antifungal susceptibility testing and sterol analysis. The homozygous erg3/erg3 mutant created, DSY1751, was resistant to azole derivatives, as expected. This mutant was, however, slightly more susceptible to amphotericin B than the parent wild type. It was possible to generate erg11/erg11 mutants in the DSY1751 background but also, surprisingly, in the background of a wild-type isolate with functional ERG3 alleles under aerobic conditions. This mutant (DSY1769) was obtained by exposure of an ERG11/erg11 heterozygous strain in a medium containing 10 μg of amphotericin B per ml. Amphotericin B-resistant strains were obtained only from ERG11/erg11 heterozygotes at a frequency of approximately 5 × 10−5 to 7 × 10−5, which was consistent with mitotic recombination between the first disrupted erg11 allele and the other remaining functional ERG11 allele. DSY1769 was also resistant to azole derivatives. The main sterol fraction in DSY1769 contained lanosterol and eburicol. These studies showed that erg11/erg11 mutants of a C. albicans strain harboring a defective erg11 allele can be obtained in vitro in the presence of amphotericin B. Amphotericin B-resistant strains could therefore be selected by similar mechanisms during antifungal therapy.


Author(s):  
Ensieh Lotfali ◽  
Masoud Mardani ◽  
Sara Abolghasemi ◽  
David Darvishnia ◽  
Mohammad Mahdi Rabiei ◽  
...  

Background and Purpose: Oropharyngeal candidiasis (OPC) is a fungal infection of the oral cavity caused by the members of C. albicans complex. Although C. africana, as a part of the complex, is considered to be mostly responsible for the development of vulvovaginal candidiasis, it may be associated with a wider clinical spectrum. Case report: This report described two cases diagnosed with oral candidiasis during the receipt of treatment for malignancies. Conventional and molecular tests were performed on the samples collected from the patients’ oral cavities. The test results revealed C. africana as the causative agent of oral candidiasis. Furthermore, in vitro antifungal susceptibility test indicated the full susceptibility of all C. africana isolates to caspofungin. However, the data were also suggestive of the resistance against fluconazole and amphotericin B. Caspofungin was used as the main antifungal agent for the treatment of oral candidiasis, resulting in the improvement of thrush in patients. The resistance of C. africana to fluconazole and amphotericin B suggests the necessity of performing in vitro susceptibility testing on the isolates for the selection of appropriate antifungal agents. Conclusion: As the findings indicated, the achievement of knowledge regarding C. africana as an emerging non-albicans Candida species and its antifungal susceptibility profile is crucial to select antifungal prophylaxis and empirical therapy for oral candidiasis in cancer patients undergoing chemotherapy.


1999 ◽  
Vol 45 (10) ◽  
pp. 871-874 ◽  
Author(s):  
Eric Dannaoui ◽  
Florence Persat ◽  
Marie-France Monier ◽  
Elisabeth Borel ◽  
Marie-Antoinette Piens ◽  
...  

A comparative study of visual and spectrophotometric MIC endpoint determinations for antifungal susceptibility testing of Aspergillus species was performed. A broth microdilution method adapted from the National Committee for Clinical Laboratory Standards (NCCLS) was used for susceptibility testing of 180 clinical isolates of Aspergillus species against amphotericin B and itraconazole. MICs were determined visually and spectrophotometrically at 490 nm after 24, 48, and 72h of incubation, and MIC pairs were compared. The agreement between the two methods was 99% for amphotericin B and ranged from 95 to 98% for itraconazole. It is concluded that spectrophotometric MIC endpoint determination is a valuable alternative to the visual reference method for susceptibility testing of Aspergillus species.Key words: antifungal, susceptibility testing, Aspergillus, spectrophotometric reading.


2000 ◽  
Vol 44 (10) ◽  
pp. 2752-2758 ◽  
Author(s):  
Rama Ramani ◽  
Vishnu Chaturvedi

ABSTRACT Candida species other than Candida albicansfrequently cause nosocomial infections in immunocompromised patients. Some of these pathogens have either variable susceptibility patterns or intrinsic resistance against common azoles. The availability of a rapid and reproducible susceptibility-testing method is likely to help in the selection of an appropriate regimen for therapy. A flow cytometry (FC) method was used in the present study for susceptibility testing ofCandida glabrata, Candida guilliermondii,Candida krusei, Candida lusitaniae,Candida parapsilosis, Candida tropicalis, andCryptococcus neoformans based on accumulation of the DNA binding dye propidium iodide (PI). The results were compared with MIC results obtained for amphotericin B and fluconazole using the NCCLS broth microdilution method (M27-A). For FC, the yeast inoculum was prepared spectrophotometrically, the drugs were diluted in either RPMI 1640 or yeast nitrogen base containing 1% dextrose, and yeast samples and drug dilutions were incubated with amphotericin B and fluconazole, respectively, for 4 to 6 h. Sodium deoxycholate and PI were added at the end of incubation, and fluorescence was measured with a FACScan flow cytometer (Becton Dickinson). The lowest drug concentration that showed a 50% increase in mean channel fluorescence compared to that of the growth control was designated the MIC. All tests were repeated once. The MICs obtained by FC for all yeast isolates except C. lusitaniae were in very good agreement (within 1 dilution) of the results of the NCCLS broth microdilution method. Paired ttest values were not statistically significant (P = 0.377 for amphotericin B; P = 0.383 for fluconazole). Exceptionally, C. lusitaniae isolates showed higher MICs (2 dilutions or more) than in the corresponding NCCLS broth microdilution method for amphotericin B. Overall, FC antifungal susceptibility testing provided rapid, reproducible results that were statistically comparable to those obtained with the NCCLS method.


2014 ◽  
Vol 58 (6) ◽  
pp. 3285-3292 ◽  
Author(s):  
S. Seyedmousavi ◽  
K. Samerpitak ◽  
A. J. M. M. Rijs ◽  
W. J. G. Melchers ◽  
J. W. Mouton ◽  
...  

ABSTRACTSpecies ofVerruconisand species ofOchroconisare dematiaceous fungi generally found in the environment but having the ability to infect humans, dogs, cats, poultry, and fish. This study presents the antifungal susceptibility patterns of these fungi at the species level. Forty strains originating from clinical and environmental sources were phylogenetically identified at the species level by using sequences of the ribosomal DNA internal transcribed spacer (rDNA ITS).In vitroantifungal susceptibility testing was performed against eight antifungals, using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. The geometric mean MICs for amphotericin B (AMB), flucytosine (5FC), fluconazole (FLC), itraconazole (ITC), voriconazole (VRC), and posaconazole (POS) and minimum effective concentrations (MECs) for caspofungin (CAS) and anidulafungin (AFG) across theOchroconisandVerruconisspecies were as follows, in increasing order. ForVerruconisspecies, the values (μg/ml) were as follows: AFG, 0.04; POS, 0.25; ITC, 0.37; AMB, 0.50; CAS, 0.65; VRC, 0.96; 5FC, 10.45; and FLC, 47.25. ForOchroconisspecies, the values (μg/ml) were as follows: AFG, 0.06; POS, 0.11; CAS, 0.67; VRC, 2.76; ITC, 3.94; AMB, 5.68; 5FC, 34.48; and FLC, 61.33. Antifungal susceptibility ofOchroconisandVerruconiswas linked with phylogenetic distance and thermotolerance. Echinocandins and POS showed the greatestin vitroactivity, providing possible treatment options forOchroconisandVerruconisinfections.


2019 ◽  
Vol 16 (31) ◽  
pp. 250-257
Author(s):  
Patrícia Duarte Costa SILVA ◽  
Brenda Lavínia Calixto dos SANTOS ◽  
Gustavo Lima SOARES ◽  
Wylly Araújo de OLIVEIRA

Fungal infections caused by species of the genus Candida are responsible for high morbidity and mortality rates, mainly affecting immunocompromised individuals. Among fungi, Candida albicans is the most frequently isolated species of clinical specimens. A problem associated with increased resistance of pathogenic fungi to the agents used in the therapeutic regimen and the limited number of drugs to cure these infections. As a result, the search for new drugs with antifungal activity has become increasingly important. The aim of this study is to study the antifungal activity of citronellal alone and in combination with amphotericin B or ketoconazole. The Minimal Inhibitory Concentration of citronellal, amphotericin B and ketoconazole against strains of Candida albicans were evaluated by the microdilution technique, and the Minimum Fungicide Concentration of citronellal against the same strains was also performed. Through the checkerboard methodology the effect of the combination of citronelal with amphotericin B or with ketoconazole was determined. This study showed that the association of citronellal with ketoconazole was shown to be an additive against one of the strains of C. albicans and indifferent to another strain. While the combined activity of citronellal and amphotericin B demonstrated an indifferent effect on the strains tested.


Sign in / Sign up

Export Citation Format

Share Document