scholarly journals Preventing thermoinhibition in a thermosensitive lettuce genotype by seed imbibition at low temperature

2003 ◽  
Vol 60 (3) ◽  
pp. 477-480 ◽  
Author(s):  
Warley Marcos Nascimento

Lettuce (Lactuca sativa L.) seed germination is strongly temperature dependent and under high temperatures, germination of most of genotypes can be erratic or completely inhibited. Lettuce seeds of 'Dark Green Boston' (DGB) were incubated at temperatures ranging from 15° to 35°C at light and dark conditions. Other seeds were imbibed in dark at 20°; 25°; 30°; and 35°C for 8 and 16 hours and then transferred to 20 or 35°C, in dark. Seeds were also incubated at constant temperature of 20° and 35 °C, in the dark, as control. In another treatment, seeds were primed for 3 days at 15°C with constant light. DGB lettuce seeds required light to germinate adequately at temperatures above 25°C. Seeds incubated at 20°C had 97% germination, whereas seeds incubated at 35°C did not germinate. Seeds imbibed at 20°C for 8 and 16 hours had germination. At 35°C, seeds imbibed initially at 20°C for 8 and 16 hours, had 89 and 97% germination, respectively. Seeds imbibed at 25°C for 16 hours, germinated satisfactory at 35°C. High temperatures of imbibition led to no germination. Primed and non-primed seeds had 100% germination at 20°C. Primed seeds had 100% germination at 35°C, whereas non-primed seeds germinate only 4%. The first hours of imbibition are very critical for lettuce seed germination at high temperatures.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 543a-543 ◽  
Author(s):  
Warley M. Nascimento ◽  
Daniel J. Cantliffe ◽  
Donald J. Huber

Under high temperatures (above 30 °C) in the greenhouse (transplant industry) or field, lettuce germination can be erratic or completely inhibited. Seed priming circumvents thermodormancy of lettuce seeds and allows germination at higher temperatures. Weakening of the endosperm layer of lettuce seeds is a prerequisite to radicle protrusion at high temperatures. Enzyme-mediated degradation of endosperm cell walls may be a crucial factor for lettuce seed germination at high temperatures. Softening of the endosperm could occur during seed priming and result in improved germination. A single-seed assay for endo-β-mannanase was used to follow the activity of this enzyme during priming in lettuce seeds. We also investigated the effects of seed priming on seed germination and mannanase activity at both inhibitory and non-inhibitory temperatures for seed germination in a thermosensitive lettuce cultivar Dark Green Boston. Seeds were primed for 3 days at 15 °C with constant light in aerated solutions of polyethylene glycol (PEG) at an osmotic potential of –1.2 MPa. Afterward, seeds were rinsed and redried at 10 °C and 45% RH for 3 days. Primed and nonprimed seeds germinated 100% at 20 °C. At 35 °C, primed seeds germinated 100%, whereas nonprimed seeds did not germinate. During priming, endo-β-mannanase activity increased between 24 and 72 h after the beginning of osmotic imbibition. Mannanase activity persisted in primed seeds, even following seed drying. Radicle protrusion did not occur under the priming conditions used in this study. Higher enzyme activity was observed in primed seeds compared with nonprimed seeds. The results suggest that priming overcomes the inhibitory effect of high temperature in thermosensitive lettuce seeds by weakening of endosperm due to increased endo-β-mannanase activity.


Author(s):  
Carolina Santos Barreto ◽  
Fortune Homsani ◽  
Nina C Barboza Da Silva ◽  
Carla Holandino

Lettuce seeds bioassays have been used in many different tests such as: alellopathyc models; developing of new drugs; ecotoxicity tests. In most cases, lettuce (Lactuca sativa L., Asteraceae) has been used because of its sensitivity, simultaneous and rapid germination, reliability of germination percentage and homogeneity of seeds. The main goal was to evaluate the effects of ultra-high diluted gibberellic acid (GA3) on lettuce seeds germination and seedling growth. Experiment was performed using Petri dishes containing one disk of Whatman nº01 paper watered with 1ml of water. In each Petri dish 10 lettuce seeds(Lactuca sativa L.) cv Regina 500 were placed and 2ml of the different treatment solutions were add: GA33µmol, GA3 3CH (10-6), GA3 12CH (10-24), water 12CH and water (no dilution and succussion). One milliliter solutions were added every 2 days of experiment. The experiment was repeated twice and each one consisted in 5 Petri dishes per treatment (n=100). All seeds were maintained in germination incubator under controlled temperature (25°C) and photoperiod (16L/8D). The tested substances were prepared according to Brazilian Homeopathic Pharmacopoeia (Brazil, 2011). The experiment was blinded all the time. All seeds germinated at same time (2 days) and after 7 days the germination rate was the same in all treatments. Root was affected just by Water 12 CH, in which shown the longest length (4.59 cm) when compared with others treatments. Shoot length was higher where gibberellin was added in concentration upper then Avogrado’s number.


1975 ◽  
Vol 53 (7) ◽  
pp. 593-599 ◽  
Author(s):  
Henry L. Speer ◽  
Dorothy Tupper

Lettuce seeds (Lactuca sativa var. Grand Rapids) were found to contain inhibitory substances, one of which is probably abscisic acid. Extracts from seeds were characterized by gas–liquid chromatography, and peaks coincident with abscisic acid were found.The germination water surrounding seeds made secondarily dormant was subjected to gas–liquid chromatography and was also found to contain peaks coincident with abscisic acid. It was also determined that the inhibitory substances are localized in the embryo but not in the endosperm or seed coat.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 513B-513 ◽  
Author(s):  
Warley M. Nascimento ◽  
Daniel J. Cantliffe ◽  
Donald J. Huber

Temperatures above 30 °C may delay or inhibit germination of most of commercial lettuce cultivars. Ethylene enhances lettuce seed germination at high temperatures. Enzyme-mediated degradation of endosperm cell walls appears to be a crucial factor for lettuce germination at high temperature. The galactomannan polysaccharides in lettuce endosperm cell wall are mobilized by endomannanase. The role of endo-mannanase during germination of lettuce seeds at high temperature (35 °C) and the possible role of etlene in enzyme regulation were investigated. Seeds of thermotolerant (`Everglades'-EVE) and thermosensitive (`Dark Green Boston'-DGB) lettuce genotypes were incubated at 20 and 35 °C in water, 10 mM of 1-aminocyclopropane-1-carboxylic acid (ACC), or 20 mM of silver thiosulphate (STS). Also, seeds were primed in an aerated solution of polyethylene glycol (PEG), or PEG+ACC, or PEG+STS. Untreated seeds germinated 100% at 20 °C. At 35 °C, EVE germinated 100%, whereas DGB germinated only 33%. Seed priming or adding ACC during imbibition increased germination of DGB to 100% at 35 °C. Adding STS during imbibition led to a decrease in germination at 35%C in EVE and completely inhibited germination of DGB. Priming with STS led to reduced germination at 35%C of both genotypes. EVE produced more ethylene than DGB during germination at high temperature. Providing ACC either during priming or during germination led to an increase in endo-mannanase activity, whereas STS inhibited mannanase activity. Higher endo-mannana activity was observed in EVE than DGB seeds. The results suggest that ethylene might overcome the inhibitory effect of high temperature in thermosensitive lettuce seeds via weakening of endosperm due to increased endo-mannanase activity.


2004 ◽  
Vol 61 (2) ◽  
pp. 156-163 ◽  
Author(s):  
Warley Marcos Nascimento ◽  
Daniel James Cantliffe ◽  
Donald John Huber

High temperatures during lettuce seed imbibition can delay or completely inhibit germination and the endosperm layer appears to restrict the radicle protrusion. The role of endo-beta-mannanase during lettuce seed germination at 35°C and the influence of ethylene in endo-beta-mannanase regulation were investigated. Seeds of 'Dark Green Boston' (DGB) and 'Everglades' (EVE) were germinated in water, or 10 mmol L-1 of 1-aminocyclopropane-1-carboxylic acid (ACC), or 10 mmol L-1 of aminoethoxyvinylglycine (AVG), or 20 mmol L-1 of silver thiosulphate (STS). Seeds were also primed in polyethylene glycol (PEG), or PEG + ACC, PEG + AVG, or PEG + STS. Untreated seeds germinated 100% at 20°C. At 35°C, EVE seeds germinated 100%, whereas DGB seeds germinated only 33%. Seed priming or adding ACC during incubation increased germination at 35°C. Higher ethylene evolution was detected in EVE than in DGB during germination at 35°C. AVG did not inhibit seed germination of DGB at 35°C, but STS did. Higher endo-beta-mannanase activity was observed in EVE compared with DGB seeds. Providing ACC either during priming or during germination increased endo-beta-mannanase activity, whereas AVG and STS led to decreased or no activity. Ethylene may overcome the inhibitory effect of high temperature in thermosensitive lettuce seeds due to increased endo-beta-mannanase, possibly leading to weakening of the endosperm.


2020 ◽  
Vol 21 (4) ◽  
pp. 1481 ◽  
Author(s):  
Shiwei Wei ◽  
Xiao Yang ◽  
Guotao Huo ◽  
Guojun Ge ◽  
Hongyan Liu ◽  
...  

Temperature strongly influences lettuce (Lactuca sativa L.) seed germination. Different lettuce genotypes respond differently to higher temperatures or thermal stress. In this study, we evaluated the germination performance of 304 lettuce accessions incubated at three temperature settings, 21 °C, 28 °C and 35 °C, respectively, for 40 h. At 21 °C, seeds of all 304 accessions germinated with very well an average germination percentage of 87.72%; at 28 °C, the average germination percentage dropped to 42.84% and at 35 °C, the germination decreased to 1.01%. Then, we investigated changes in metabolic profiles of lettuce seed response to thermal stress using an untargeted metabolomics approach. Results suggested that seeds of thermal-sensitive and thermal-tolerant cultivars employed different metabolic strategies in response to thermal stress during germination. Thermal-sensitive buds accumulated more significant amounts of organic acids, amino acids, sugars, sterols, phenolic compounds and terpenoids compared to thermal-tolerant buds at 21 °C. Thermal-tolerant lettuce cultivar accumulated higher concentrations of amino acids, organic acids, sugars, sesquiterpene lactones, sterols, and fatty acids derivatives during the germination at 35 °C compared to germinated at 21 °C. This investigation paves the way to link the metabolomics to other external and internal factors affecting lettuce seed germination under thermal stress.


1998 ◽  
Vol 123 (6) ◽  
pp. 1102-1106 ◽  
Author(s):  
Yu Sung ◽  
Daniel J. Cantliffe ◽  
Russell Nagata

Temperature is an important environmental factor that affects lettuce (Lactuca sativa L.) germination. The present research was conducted to determine the role of seed coverings on lettuce seed germination at high temperature. Five lettuce genotypes were primed in order to bypass thermoinhibitional effects on germination. During germination of primed and nonprimed seeds, imbibition followed a normal triphasic pattern. Primed seeds had higher final water content, a decreased imbibitional phase II, and germinated at 36 °C compared to nonprimed seeds of thermosensitive genotypes, which did not germinate at 36 °C. Puncture tests were conducted to determine the force required to penetrate the whole seed or endosperm of the five genotypes at 24 and 33 °C. `Dark Green Boston', a thermosensitive genotype, had the highest mean resistance (0.207 N) and PI 251245, a thermotolerant genotype, had the lowest (0.139 N). Resistance to penetration of the endopserm of the five genotypes was different at both temperatures. However, three thermotolerant genotypes had lower endosperm resistance than two thermosensitive types. At 36 °C, the penetration force for primed and nonprimed seeds was compared after the first hour of imbibition and 1 hour before radicle protrusion. The force required to penetrate the seed was affected by genotype, seed priming, and duration of imbibition. Puncture force decreased as imbibition time at 36 °C increased in primed and nonprimed seed of each thermotolerant genotype but not in the thermosensitive genotypes. Priming reduced the initial force necessary to penetrate the seed and endosperm in all genotypes. Thus, for radicle protrusion to occur, there must first be a decrease in the resistance of the endosperm layer as evidenced by priming or thermotolerant genotype. Then, the pericarp and integument are sufficiently weakened so that tissue resistance is lower than the turgor pressure of the expanding embryo, allowing germination to be completed.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1148G-1149
Author(s):  
Margaret Mnichowicz ◽  
Janice Coons ◽  
John McGrady

Lettuce (Lactuca sativa L.) seed germination is inhibited at temperature higher than 25-30C. The extent of this inhibition varies between seed lots. Our objective was to determine how the season during which seed develops affects the ability of seeds to germinate and establish a stand at high temperatures. Lettuce seed, `Empire', was produced during 2 summers and 2 winters (1988 and 1989) in Yuma, AZ. These seeds were germinated at 20, 25, 30 or 35C in petri dishes or in growth pouches to determine percent germination or root lengths, respectively. Electrical conductivity of seed leachates was measured. Field emergence of seeds was tested with early fall plantings in Yuma, AZ. Percent seed germination was greater and root lengths were longer for the seeds produced in summer than in winter. Conductivity will be correlated with relative tolerance to high temperatures of the different seed lots. In the field, percent emergence of seed lots from summer and winter averaged 60% and 38%, respectively.


Sign in / Sign up

Export Citation Format

Share Document