scholarly journals Evaluation of myofibroblasts and its association with TGF-β and IFN-γ in lesions of patients with american tegumentary leishmaniasis

2012 ◽  
Vol 87 (4) ◽  
pp. 545-549 ◽  
Author(s):  
Agostinho Gonçalves Viana ◽  
Carlos Alberto de Carvalho Fraga ◽  
Paulo Rogério Ferreti Bonan

BACKGROUND: Leishmaniasis is caused by protozoa of Leishmania spp. genus. It is transmitted by the bite of the sand fly insect. It is believed that 12 million people are infected with this disease and that its annual incidence is 2 million; this number is increasing. OBJECTIVES: The present study aimed to evaluate the expression of myofibroblasts through alpha smooth muscle actin labeling, and to analyze their relationship with the expression of the cytokines Interferon gama (IFN-γ) and Transforming growth factor beta (TGF-β1) in lesions of American tegumentary leishmaniasis (ATL). METHODS: For this retrospective study, we gathered 28 patients diagnosed with ATL between 2002 and 2006. We verified α-SMA positivity and performed IFN-γ and TGF-β1 immunolabeling to identify the profile of these cytokines in both positive and negative cases for myofibroblasts, via immunohistochemistry, in order to assess the presence of myofibroblasts,. RESULTS: We observed that out of the 28 cases, 17 (60.71%) were positive for alpha smooth muscle actin, while 11 (39.29%) were negative, and IFN-γ was more expressed than TGF-β1 (p=0.007). The mean percentages of expression of IFN-γ and TGF-β1 in the group negative for alpha smooth muscle actin were different, with an increased expression of IFN-γ (p=0.047). However, in the group positive for alpha smooth muscle actin, there was no difference in cytokine labeling (p>0.05). CONCLUSION: We verified the presence of positive α-SMA stromal cells in the majority of the cases of ATL, indicating the presence of myofibroblasts. In cases negative for alpha smooth muscle actin, an increased expression of IFN-γ compared to TGF-β1 was observed, revealing an inflammatory phase progressing to a healing process.

1997 ◽  
Vol 33 (8) ◽  
pp. 622-627 ◽  
Author(s):  
M. Reza Ghassemifar ◽  
Roy W. Tarnuzzer ◽  
Nasser Chegini ◽  
Erkki Tarpila ◽  
Gregory S. Schultz ◽  
...  

2010 ◽  
Vol 80 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Yao Meng ◽  
Xianglong Han ◽  
Lan Huang ◽  
Ding Bai ◽  
Hongyou Yu ◽  
...  

2018 ◽  
Vol 39 (11) ◽  
pp. 1191-1199 ◽  
Author(s):  
Caroline A Glicksman ◽  
Michel A Danino ◽  
Johnny I Efanov ◽  
Arij El Khatib ◽  
Monica Nelea

Abstract Background Although increasingly reported in the literature, most plastic surgeons cannot define the etiology of double capsules. Often an incidental finding at implant exchange, double capsules are frequently associated with macrotextured devices. Several mechanisms have been proposed, including at the forefront that shearing causes a delamination of the periprosthetic capsule into a double capsule. Objectives This study was designed to confirm the hypothesis that mechanical forces are involved in formation of double capsules by histological analysis. Methods A prospective analysis of consecutive implants with double capsules removed over 2 years was performed. Data collected at the time of surgery included Baker classification, reason for explant, implant manufacturer and style, and any presence of a seroma associated with the capsule. Specimens were sent for analysis by histology utilizing hematoxylin and eosin and alpha-smooth muscle actin staining techniques. Results Eight double capsules were collected for specimen analysis. All capsules demonstrated evidence of granulation tissue, alpha-smooth muscle actin positive myofibroblasts, and folds with embedded texture. Fibrosis surrounded weak areas with presence of layering and splitting, creating a potential space that is prone to separation. Tears and folds from granulomatous reaction are also present within the outer layer of the double capsule, which can only be explained by a mechanical shearing force as a pathogenic mechanism. Conclusions Understanding the pathogenesis of double capsules may allow plastic surgeons to refine their indications for macrotextured implants while providing guidance to patients on avoidance of activities that produce shear-forces. The findings support the hypothesis that shearing forces delaminate the capsule into 2 separate distinct capsules. Level of Evidence: 5


Sign in / Sign up

Export Citation Format

Share Document