scholarly journals Low intensity ultrasound effects over osteopenic female rats bones

2003 ◽  
Vol 11 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Daniela Cristina Leite de Carvalho ◽  
Alberto Cliquet Jr

Several studies have already shown the beneficial effects of low intensity pulsed ultrasound on osteogenesis in fracture cases. However, few reports have related the ultrasound action in bone with some injury but without fracture. Thus, we induced a rat osteopenia model by ovariectomy and the proximal third of rat femur was stimulated by ultrasound (200mus burst of 1.5 MHz sine waves repeated at 1.0 kHz, 30mW/cm², SATA) for 20 min/day, during 20 days. After the treatment period, the body weight was significantly higher in the non-treated group than the treated one. No significant difference in bone mineral content was detected among the groups (p > 0.05). Also, no significant difference was noted in the mechanical properties of the femoral diaphysis. However, histologic investigations showed that the treated femur presented less microarchitectural deterioration than the non-treated group. Moreover, it was demonstrated that the treated group did show recent bone formation which was not there in the non-treated group. These results suggest that the low intensity ultrasound can interfere in a positive way on osteoporosis.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xiuzhi Yang ◽  
Yu Wu ◽  
Jiqing Li ◽  
Wuliang Yin ◽  
Yang An ◽  
...  

To investigate how a back propagation neural network based on genetic algorithm (GA-BPNN) optimizes the low-intensity pulsed ultrasound (LIPUS) stimulation parameters to improve the bone marrow mesenchymal stem cells (BMSCs) viability further. The LIPUS parameters were set at various frequencies (0.6, 0.8, 1.0, and 1.2 MHz), voltages (5, 6, 7, and 8 V), and stimulation durations (3, 6, and 9 minutes). As only some discrete points can be set up in the experiments, the optimal LIPUS stimulation parameter may not be in the value of these settings. The GA-BPNN algorithm is used to optimize parameters of LIPUS to increase the BMSCs viability further. The BMSCs viability of the LIPUS-treated group was improved up to 19.57% (P<0.01). With the optimization via the GA-BPNN algorithm, the viability of BMSCs was further improved by about 5.36% (P<0.01) under the optimized condition of 6.92 V, 1.02 MHz, and 7.3 min. LIPUS is able to improve the BMSCs viability, which can be improved further by LIPUS with parameter optimization via GA-BPNN algorithm.


2020 ◽  
Vol 15 (5) ◽  
pp. 462-472 ◽  
Author(s):  
Abdollah Amini ◽  
Sufan Chien ◽  
Mohammad Bayat

Objective: This is a systematic review of the effects of low-intensity pulsed ultrasound (LIPUS) on stem cell differentiation. Background Data: Recent studies have investigated several types of stem cells from different sources in the body. These stem cells should strictly be certified and promoted for cell therapies before being used in medical applications. LIPUS has been used extensively in treatment centers and in research to promote stem cell differentiation, function, and proliferation. Materials and Methods: The databases of PubMed, Google Scholar, and Scopus were searched for abstracts and full-text scientific papers published from 1989-2019 that reported the application of LIPUS on stem cell differentiation. Related English language articles were found using the following defined keywords: low-intensity pulsed ultrasound, stem cell, differentiation. Criteria for inclusion in the review were: LIPUS with frequencies of 1–3 MHz and pulsed ultrasound intensity of <500 mW/cm2. Duration, exposure time, and cell sources were taken into consideration. Results: Fifty-two articles were selected based on the inclusion criteria. Most articles demonstrated that the application of LIPUS had positive effects on stem cell differentiation. However, some authors recommended that LIPUS combined with other physical therapy aides was more effective in stem cell differentiation. Conclusions: LIPUS significantly increases the level of stem cell differentiation in cells derived mainly from bone marrow mesenchymal stem cells. There is a need for further studies to analyze the effect of LIPUS on cells derived from other sources, particularly adipose tissue-derived mesenchymal stem cells, for treating hard diseases, such as osteoporosis and diabetic foot ulcer. Due to a lack of reporting on standard LIPUS parameters in the field, more experiments comparing the protocols for standardization of LIPUS parameters are needed to establish the best protocol, which would allow for the best results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sadamitsu Ichijo ◽  
Tomohiko Shindo ◽  
Kumiko Eguchi ◽  
Yuto Monma ◽  
Takashi Nakata ◽  
...  

AbstractSince the treatment window of thrombolytic therapy for stroke is limited, new therapy remains to be developed. We have recently developed low-intensity pulsed ultrasound (LIPUS) therapy to improve cognitive dysfunction in mouse models of vascular dementia and Alzheimer’s disease. Here, we further aimed to examine whether our LIPUS therapy improves neurological recovery from ischemic stroke, and if so, to elucidate the mechanisms involved. In a mouse model of middle cerebral artery occlusion (MCAO), we applied LIPUS (32 cycles, 193 mW/cm2) to the whole brain 3 times in the first week (days 1, 3, and 5) after MCAO. We evaluated neurological functions using behavioral tests and performed histological analyses. Furthermore, to elucidate how LIPUS works within the injured brain, we also tested the effects of LIPUS in endothelial nitric oxide synthase (eNOS)-deficient (eNOS−/−) mice. In wild-type mice, the LIPUS therapy markedly improved neurological functions in the tightrope and rotarod tests at 28 days after MCAO. Histological analyses showed that the LIPUS therapy significantly increased the numbers of CD31-positive blood vessels in the perifocal lesion and doublecortin (DCX)-positive neurons in the ischemic striatum, indicating the angio-neurogenesis effects of the therapy. Importantly, these beneficial effects of the LIPUS therapy were totally absent in eNOS−/− mice. No adverse effects of the LIPUS therapy were noted. These results indicate that the LIPUS therapy improves neurological functions after stroke through enhanced neuro-angiogenesis in mice in vivo in an eNOS-dependent manner, suggesting that it could a novel and non-invasive therapeutic option for stroke.


2021 ◽  
Author(s):  
Ra'ed Al-Dboush ◽  
Anahita Naseri Esfahani ◽  
Tarek El-Bialy

ABSTRACT Objective To assess the efficiency of low-intensity pulsed ultrasound (LIPUS) and photobiomodulation (PBM) interventions in accelerating orthodontic tooth movement during clear aligner therapy (CAT). Materials and Methods This retrospective study was carried out on the records of 84 subjects who were treated using CAT. Twenty-eight patients were treated using CAT with a daily use of LIPUS for 20 minutes, 28 patients were treated using CAT with a daily use of PBM for 10 minutes, and 28 patients were treated using CAT alone. The total duration of treatment was recorded for all patients. One-way analysis of variance and post hoc Tukey test were used to assess whether there was any significant difference in total treatment duration among the three groups (P &lt; .05). Results The mean treatment durations in days were 719 ± 220, 533 ± 242, and 528 ± 323 for the control, LIPUS, and PBM groups, respectively. The LIPUS group showed a 26% reduction, on average, in treatment duration when compared with the control group, whereas the PBM group showed an average 26.6% reduction in the treatment duration when compared with the control group. The results showed that there were statistically significant differences among the groups (P = .011). Treatment durations were significantly reduced in the LIPUS and PBM groups as compared with the control (P = .027 and P = .023, respectively), with no statistically significant differences between the LIPUS and PBM groups (P = .998). Conclusions Daily use of LIPUS or PBM as adjunctive interventions during CAT could reduce the duration of orthodontic treatment.


2008 ◽  
Vol 40 (Supplement) ◽  
pp. S82
Author(s):  
Stuart J. Warden ◽  
David E. Komatsu ◽  
Julie L. Bond ◽  
Sean M. Hassett ◽  
Johanna Rydberg

2021 ◽  
Vol 6 (11) ◽  
pp. 4073-4082
Author(s):  
Kunzhan Cai ◽  
Yilai Jiao ◽  
Quan Quan ◽  
Yulin Hao ◽  
Jie Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuya Shimizu ◽  
Naomasa Fujita ◽  
Kiyomi Tsuji-Tamura ◽  
Yoshimasa Kitagawa ◽  
Toshiaki Fujisawa ◽  
...  

AbstractUltrasound stimulation is a type of mechanical stress, and low-intensity pulsed ultrasound (LIPUS) devices have been used clinically to promote fracture healing. However, it remains unclear which skeletal cells, in particular osteocytes or osteoblasts, primarily respond to LIPUS stimulation and how they contribute to fracture healing. To examine this, we utilized medaka, whose bone lacks osteocytes, and zebrafish, whose bone has osteocytes, as in vivo models. Fracture healing was accelerated by ultrasound stimulation in zebrafish, but not in medaka. To examine the molecular events induced by LIPUS stimulation in osteocytes, we performed RNA sequencing of a murine osteocytic cell line exposed to LIPUS. 179 genes reacted to LIPUS stimulation, and functional cluster analysis identified among them several molecular signatures related to immunity, secretion, and transcription. Notably, most of the isolated transcription-related genes were also modulated by LIPUS in vivo in zebrafish. However, expression levels of early growth response protein 1 and 2 (Egr1, 2), JunB, forkhead box Q1 (FoxQ1), and nuclear factor of activated T cells c1 (NFATc1) were not altered by LIPUS in medaka, suggesting that these genes are key transcriptional regulators of LIPUS-dependent fracture healing via osteocytes. We therefore show that bone-embedded osteocytes are necessary for LIPUS-induced promotion of fracture healing via transcriptional control of target genes, which presumably activates neighboring cells involved in fracture healing processes.


Sign in / Sign up

Export Citation Format

Share Document