scholarly journals Applicability of Moringa oleifera Lam. pie as an adsorbent for removal of heavy metals from waters

Author(s):  
Affonso C. Gonçalves Junior ◽  
Ana P. Meneghel ◽  
Fernanda Rubio ◽  
Leonardo Strey ◽  
Douglas C. Dragunski ◽  
...  

This study evaluated the efficacy of moringa seeds (Moringa oleifera Lam.) as an adsorbent material for removing toxic heavy metals such as cadmium, lead, and chromium from contaminated solutions. The effect of the adsorbent mass was investigated at two pH conditions (5.0 and 7.0). The optimized conditions were 0.300 g of adsorbent at pH 5.0, used for the isotherms construction, and linearized according to Langmuir and Freundlich models. Results showed that cadmium adsorption was similar in both the models used. For lead, the Freundlich model had the best adjustment and chromium was better adjusted by the Langmuir model. It was concluded that the adsorbent was effective in the remediation of solutions containing cadmium, lead and chromium, thus, its use as sustainable alternative material is feasible, since it has low cost, does not need a previous treatment and it is a byproduct.

2019 ◽  
Vol 233 (3) ◽  
pp. 315-345 ◽  
Author(s):  
Ayesha Naseer ◽  
Anum Jamshaid ◽  
Almas Hamid ◽  
Nawshad Muhammad ◽  
Moinuddin Ghauri ◽  
...  

Abstract Water Pollution through heavy metals is the concerned issue as many industries like tanning, steel production and electroplating are the major contributors. Various toxic Heavy metals are a matter of concern as they have severe environmental and health effects. Most commonly, conventional methods are using to remove these heavy metals like precipitation, ion exchange, which are not economical and have disposal issues. Adsorption of heavy metals by different low-cost adsorbents seems to be the best option in wastewater treatment. Many agricultural by-products proved to be suitable as low-cost adsorbents for removing heavy metals efficiently in a minimum time. Lignin residues that involves both agricultural and wood residues and sometimes separated out from black liquor through precipitation have adsorption capacity and affinity comparable to other natural adsorbents. However, lignin as bio adsorbents have the advantage of less cost and gives efficient adsorption results. This study is a review of the recent literature on the use of natural lignin residues for heavy metals adsorption under different experimental scenarios.


STED JOURNAL ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Samuel Obeng Apori ◽  
Kofi Atiah ◽  
Emmanuel Hanyabui ◽  
John Byalebeka

Heavy metals are considered to be one of the major contaminants of water in recent years due to their non-biodegradable property; hence making them toxic and bioaccumulate to living organisms. Conventional methods such us chemical precipitation, physical treatment through ion exchange are used for removing heavy metal ions from water. These methods are expensive and attributed to incomplete metals removal and high cost of treatment. In recent years, researchers have found alternative low cost and effective method for removal of toxic metals through biosorption process using biological materials. Moringa oleifera seeds is one of the biological materials which has effective adsorption capacity for removal of heavy metals from water and wastewater. In this article, the seeds of Moringa oleifera seeds as a low-cost biosorbent for removal of heavy metals is presented. Moringa oleifera seeds is inexpensive material that contains amino acids. The amino acid is a major constituent of the functional groups that aids in greater ability of heavy metals removal through metal ion exchange or complexation, which is mainly affected by pH, biosorbent dosage, and contact time. Moringa oleifera seeds residues have a greater capacity to absorb heavy metals in a single solution compared to multi ion solution.


2013 ◽  
Vol 12 (3) ◽  
pp. 239-247

The removal of heavy metals from wastewaters is a matter of paramount importance due to the fact that their high toxicity causes major environmental pollution problems. One of the most efficient, applicable and low cost methods for the removal of toxic metals from aqueous solutions is that of their adsorption on an inorganic adsorbent. In order to achieve high efficiency, it is important to understand the influence of the solution parameters on the extent of the adsorption, as well as the kinetics of the adsorption. In the present work, the adsorption of Cu(II) species onto TiO2 surface was studied. It was found that the adsorption is a rapid process and it is not affected by the value of ionic strength. In addition, it was found that by increasing the pH, the adsorbed amount of Cu2+ ions and the value of the adsorption constant increase, whereas the value of the lateral interaction energy decreases.


Author(s):  
Siew-Teng. Ong ◽  
Sie-Tiong Ha ◽  
Pei-Sin Keng ◽  
Siew-Ling Lee ◽  
Yung-Tse Hung

2015 ◽  
Vol 3 (3) ◽  
pp. 35-39
Author(s):  
Sannasi Palsan ◽  
Chai Swee Fern ◽  
Stephanie Bernardine ◽  
Lim Fan Shiang

Saraca thaipingensis or ‘Gapis’ tree, classified under the Fabaceae family is a native of Taiping; copious over Peninsular Malaysia and Southeast Asia. The withered and fallen dead leaves were collected from INTI International University’s garden walkway. To date, literature has yet to capture the use of S. thaipingensis tree parts or refuse as potential biosorbent material for the removal of heavy metals thus verifying the novelty of this study. Batch experiments were carried out with the leaf powder to study the effects of dosage, particle size and contact time towards Cr(VI) removal (%) at 1-100 mg/L. Results showed that Cr(VI) removal increased from 52.22% to 99.31% (p < 0.05) with increase in biosorbent dosage (0.005, 0.010, 0.015, 0.020, 0.025 and 0.050 g). The different particle size ranges tested were: 107-125, 126-150, 151-250, 251-500, and 501- 1000 ?m. Highest Cr(VI) removal of 99.53% was obtained with the 151-250 ?m particle size; further size decrease did not yield more removal (p > 0.05). The optimal Cr(VI) removal was recorded after 45 min (99.62%) and 90 min (99.76%) contact time (p > 0.05). Further characterization and optimization studies are being carried out to develop a novel, sustainable, low cost yet effective leaf powder based biosorbent material.


Author(s):  
Abimbola O. Aleshinloye ◽  
Kemayou Ngangsso ◽  
Feyisara B. Adaramola ◽  
Adebayo Onigbinde

This study investigated the potential of some agricultural wastes viz; African Star apple seed shell (ASS, plant source), crab shell (CS, animal source) and chicken egg shell (ES, animal source) as eco-friendly and low-cost biological materials for the removal of heavy metals from poultry wastewater. TS, TSS and TDS of the wastewater sample were assayed by filtration methods, chloride content by previously reported method and heavy metal contents (Zn, V, Cd, Fe, Ni, Cu, Co, Pb, Cr and Mn); were analyzed using Microwave Plasma Atomic Emission Spectrometer. The results of the solids and chloride contents of the poultry wastewater were TDS (3100 mg/L), TS (3700 mg/L), TSS (6000 mg/L) and chloride (4.7 g/L); all above the EPA permissible limits. Results of the FTIR analysis showed that ASS is an amide polymer while the CS and ES shells are mixtures of amide and carbonate polymers. Also, results of heavy metal analysis before and after adsorption showed that ASS caused removal of Zn, V, Fe, Cu, Co/ Pb and Mn by 48.27, 32.22, 49.64, 91.44, 100 and 82.39% respectively while Cd, Ni and Cr contents increased by 31, 61 and 48.3% respectively. CS showed removal of Fe, Ni/ Co/ Cr, Pb and Mn by 89.64, 100, 3.51 and 95.96% respectively while Zn, V, Cd and Cu contents increased by 1.7, 61.2, 76.1 and 68.1% respectively. Meanwhile, with ES, the contents of Zn, Fe, Ni, Cu, Cr and Mn increased by 31.56, 86.36, 100, 55.5, 45.80 and 90.33% respectively while the contents of V, Cd, Co and Pb decreased by 78.9, 86.7, 42.5 and 46.2% respectively. This study demonstrated the use of ASS, CS and ES as low- cost and eco-friendly agricultural wastes with significant potential for removal of heavy metals from wastewaters.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 111 ◽  
Author(s):  
Tawfiq J. H. Banch ◽  
Marlia M. Hanafiah ◽  
Abbas F. M. Alkarkhi ◽  
Salem S. A. Amr ◽  
Nurul U. M. Nizam

Leachate is a complex liquid that is often produced from landfills, and it contains hazardous substances that may endanger the surrounding environment if ineffectively treated. In this work, four leachate treatment applications were examined: combined leachate/palm oil mill effluent (POME) (LP), leachate/tannin (LT), pre-(leachate/tannin) followed by post-(leachate/POME) (LT/LP), and pre-(leachate/POME) followed by post-(leachate/tannin) (LP/LT). The aim of this work is to evaluate and compare the performance of these treatment applications in terms of optimizing the physicochemical parameters and removing heavy metals from the leachate. The highest efficiency for the optimization of the most targeted physicochemical parameters and the removal of heavy metals was with the LP/LT process. The results are indicative of three clusters. The first cluster involves raw leachate (cluster 1), the second contains LP and LP/LT (cluster 2), and the third also consists of two treatment applications, namely, LT and LT/LP (cluster 3). The results demonstrate that LP/LT is the most appropriate method for leachate treatment using low-cost agro-industrial materials.


2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luís Fernando Cusioli ◽  
Charleston de Oliveira Bezerra ◽  
Heloise Beatriz Quesada ◽  
Aline Takaoka Alves Baptista ◽  
Letícia Nishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document