scholarly journals Rapid screening for aluminum tolerance in maize (Zea mays L.)

2000 ◽  
Vol 23 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Carlos Daniel Giaveno ◽  
José B. Miranda Filho

A significant decrease in maize grain yield due to aluminum toxicity is considered to be one of the most important agricultural problems for tropical regions. Genetic improvement is a useful approach to increase maize yield in acid soils, but this requires a rapid and reliable method to discriminate between genotypes. In our work we investigated the feasibility of using hematoxylin staining (HS) to detect Al-tolerant plants at the seedling stage. The original population along with two populations obtained after one cycle of divergent selection were evaluated by net root growth (NRG) and HS after 7 days in nutrient solution. Results showed a negative correlation between NRG and HS in all populations, in which sensitive plants, characterized by low NRG, exhibited more intense staining than tolerant plants. These results indicate that HS is a useful procedure for selecting Al-tolerant maize seedlings.

2018 ◽  
Vol 48 (3) ◽  
pp. 299-305
Author(s):  
Lucas Barbosa de Freitas ◽  
Dirceu Maximino Fernandes ◽  
Suelen Cristina Mendonça Maia ◽  
Laerte Gustavo Pivetta ◽  
Maurício Dutra Zanotto

ABSTRACT Castor bean plants are susceptible to aluminum (Al) in the soil, requiring adequate management techniques for their cultivation in acid soils containing high Al levels, as it occurs in tropical regions. This study aimed to assess the Al tolerance of castor bean lines. A randomized block design, in a 2 x 9 factorial scheme, with four replicates, was used. The treatments consisted of presence and absence of Al, as well as nine castor bean lines (CRZ H06, CRZ H11, CRZ H12, CRZ H15, CRZ H17, CRZ H18, CRZ H19, CRZ H22 and FCA). Based on a distribution into quartiles, the lines were divided into two groups. The Al-tolerant group contained the CRZ H06, H11 and H17 lines, while the group susceptible to Al was composed of CRZ H12, H15, H18, H19, H22 and FCA. The FCA and CRZ H17 lines showed the highest growth, when cultivated without Al.


2020 ◽  
Author(s):  
Ana Paula Ribeiro ◽  
Felipe Vinecky ◽  
KAROLINE ESTEFANI DUARTE ◽  
Thaís Ribeiro Santiago ◽  
Rafael Augusto das Chagas Noqueli Casari ◽  
...  

Abstract BackgroundA major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate are both the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family. ResultsIn this study, sugarcane plants constitutively overexpressing the Sorghum bicolor MATE gene (SbMATE) showed improved tolerance to Al when compared to non-transgenic (NT) plants, characterized by sustained root growth and exclusion of aluminum from the root apex based on the result obtained with hematoxylin staining. In addition, genome-wide analysis of the recently released sugarcane genome identified 11 ALMT genes and molecular studies showed potential new targets for aluminum tolerance. ConclusionsOur results indicate that the transgenic plants overexpressing the Sorghum bicolor MATE has an improved tolerance to Al. The expression profile of ALMT genes revels potential candidate genes to be used has an alternative for agricultural expansion in Brazil and other areas with aluminum toxicity in poor and acid soils.


2001 ◽  
Vol 24 (1-4) ◽  
pp. 221-230 ◽  
Author(s):  
Rodrigo D. Drummond ◽  
Claudia T. Guimarães ◽  
Juliana Felix ◽  
Fernando E. Ninamango-Cárdenas ◽  
Newton P. Carneiro ◽  
...  

Aluminum is one of the major factors that affect plant development in acid soils, causing a substantial reduction in yield in many crops. In South America, about 66% of the land surface is made up of acid soils where high aluminum saturation is one of the main limiting factors for agriculture. The biochemical and molecular basis of aluminum tolerance in plants is far from being completely understood despite a growing number of studies, and in the specific case of sugarcane there are virtually no reports on the effects of gene regulation on aluminum stress. The objective of the work presented in this paper was to prospect the sugarcane expressed sequence tag (SUCEST) data bank for sugarcane genes related to several biochemical pathways known to be involved in the responses to aluminum toxicity in other plant species and yeast. Sugarcane genes similar to most of these genes were found, including those coding for enzymes that alleviate oxidative stress or combat infection by pathogens and those which code for proteins responsible for the release of organic acids and signal transducers. The role of these genes in aluminum tolerance mechanisms is reviewed. Due to the high level of genomic conservation in related grasses such as maize, barley, sorghum and sugarcane, these genes may be valuable tools which will help us to better understand and to manipulate aluminum tolerance in these species.


2002 ◽  
Vol 37 (8) ◽  
pp. 1099-1103 ◽  
Author(s):  
Euclydes Minella ◽  
Mark Earl Sorrells

Aluminum (Al) toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.


2020 ◽  
pp. 39-48
Author(s):  
Agnieszka Niedziela ◽  
Piotr Bednarek

Aluminum toxicity is the major growth-limiting factor for crop cultivation on acid soils. Tolerance mecha-nisms for Al stress in triticale have not been systematically investigated so far. It is presumed, that in the case of this species they may be a function of the interaction between wheat and rye genes. In this study the se-quences of forty-six Diversity Arrays Technology markers associated with aluminum tolerance in triticale and under selection pressure were blasted against BLAST database for the identification of possible functions of the respective genome regions in Al-stress response. The analysis has showed sequences similarity to the domains involved in signaling, disease response and DNA repair mechanisms.


Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 663 ◽  
Author(s):  
EA Close ◽  
HKJ Powell

This paper examines the use of short extraction times, and the determination of aluminium with chrome azurol S (CAS), for the estimation of 0.02 M CaCl2-soluble aluminium in soils. It reports the correlation between CAS-reactive aluminium in 5 min extracts and percent maximum yield of white clover (Trifolium repens) for a series of acid soils. The reactivity of soluble and colloidal aluminium species with the metallochromic reagent CAS has been assessed. ~ l ( a q ) ~ + , simple hydroxy species and complexes of weakly binding ligands (salicylic acid, tannins) are CAS-reactive (2 rnin). In contrast, complexes of strongly binding ligands (citric acid, fulvic acid) are not CAS-reactive ([Al] ~ [L] ~ [CAS] ~ 1-2~10-5 M). For a series of six limed phosphated topsoils and subsoils (pH 4.2-5.5), 0.02 M CaCl2- soluble aluminium, as determined with CAS, was negatively correlated against the percent maximum yield of white clover; r2 = -0.73** (5 min extraction), n = 20. This correlation is similar to that for yield against total aluminium as determined by atomic absorption spectroscopy after 60 min extraction (r2 = -0.77**). However, the colorimetric analysis is more convenient and sensitive; further, it does not measure colloidal and polymeric aluminium species (which may not be plant-available). The satisfactory correlation achieved for short extraction times suggests use of CAS for a rapid field method for aluminium toxicity in soils.


BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Huan-Xin Jiang ◽  
Lin-Tong Yang ◽  
Yi-Ping Qi ◽  
Yi-Bin Lu ◽  
Zeng-Rong Huang ◽  
...  

2016 ◽  
Vol 24 (4) ◽  
pp. 350-356
Author(s):  
Gustavo André Colombo ◽  
Aurélio Vaz-de-Melo ◽  
Gilberto Coutinho Machado Filho ◽  
André Silva de Sousa

The constant improvement of selection methods is necessary in order to optimize efficiency of breeding programs for aluminum tolerance. Thus, the aim of this study was to establish a vase volume to the ideal semi-hydroponic cultivation of forage grasses subjected to stress by aluminum in nutrient solution. The experimental design completely randomized, with four replicates, each replicate consisting of one plant per vase. The treatments were arranged in a factorial design 4x5, being the first factor consists of four genotypes of forage grasses Brachiaria Humidicola; Brachiaria brizantha cv. Piatã; Panicum maximum cv. Massai and Panicum maximum cv. Mombaça) and the second consisting of five separate volumes plastics vases where seedlings were grown (0.2; 0.25; 0.3; 0.35 and 0.4 dm³). The grasses grown in a semi-hydroponics system irrigated with nutrient solution rich in aluminum (3 mg L-1). Was measured plant height, dry weight of aereal part and root length. The semi-hydroponic cultivation in aluminum increased nutrient solution is effective in differentiation of forage grasses genotypes in relation to aluminum tolerance. Pots volumes near 0.3 dm3 promote greater development for root and aerial part attributes in forage grasses grown in nutrient solution with aluminum toxicity.


2016 ◽  
Vol 1 (2) ◽  
pp. 73
Author(s):  
Arief Vivi Noviati ◽  
Sri Hutami ◽  
Ika Mariska ◽  
Endang Sjamsudin

<p class="p1">Aluminum toxicity is a major constraint to soybean production in acid soils. Since variabilities on Al tolerance in plants are very limited, mutation breeding, and <em>in vitro </em>selection were used to increase the variability. Three soyben genotypes were produced from cultivars Wilis and Sindoro that have been gamma irradiated and selected <em>in vitro </em>for their tolerance to Al on Al and low pH media. These genotypes and their original cultivars were then planted in a greenhouse in an acid soil on May 2001. The results showed that the plant performances were varied, some were shorter and more compact than the original. Based on the yield components, a number of plants from the genotypes showed higher than those of the control cultivars. These plants were considered more tolerant to Al than the original cultivars.</p>


Sign in / Sign up

Export Citation Format

Share Document