scholarly journals Phylogenetic overdispersion of plant species in southern Brazilian savannas

2009 ◽  
Vol 69 (3) ◽  
pp. 843-849 ◽  
Author(s):  
IA. Silva ◽  
MA. Batalha

Ecological communities are the result of not only present ecological processes, such as competition among species and environmental filtering, but also past and continuing evolutionary processes. Based on these assumptions, we may infer mechanisms of contemporary coexistence from the phylogenetic relationships of the species in a community. We studied the phylogenetic structure of plant communities in four cerrado sites, in southeastern Brazil. We calculated two raw phylogenetic distances among the species sampled. We estimated the phylogenetic structure by comparing the observed phylogenetic distances to the distribution of phylogenetic distances in null communities. We obtained null communities by randomizing the phylogenetic relationships of the regional pool of species. We found a phylogenetic overdispersion of the cerrado species. Phylogenetic overdispersion has several explanations, depending on the phylogenetic history of traits and contemporary ecological interactions. However, based on coexistence models between grasses and trees, density-dependent ecological forces, and the evolutionary history of the cerrado flora, we argue that the phylogenetic overdispersion of cerrado species is predominantly due to competitive interactions, herbivores and pathogen attacks, and ecological speciation. Future studies will need to include information on the phylogenetic history of plant traits.

2020 ◽  
Author(s):  
Nayara Mesquita Mota ◽  
Markus Gastauer ◽  
Juan Fernando Carrión ◽  
João Augusto Alves Meira-Neto

AbstractRoad networks cause disturbances that can alter the biodiversity and the functioning of the Caatinga ecosystems. We tested the hypotheses that (i) Caatinga vegetation near roads is less taxonomically, functionally and phylogenetically diverse, (ii) phylogenetically and functionally more clustered than vegetation further from roads, (iii) plant traits associated with herbivory deterrence are conserved within the phylogenetic lineages, and (iv) Caatinga vegetation near roads selects for disturbance-related traits. We sampled herbaceous and woody component of vegetation in four plots near roads and four plots further from roads to test these hypothesis. Sampled species were classified according to their resprouting capacity, nitrogen fixation, succulence/spines, urticancy/toxicity, lifeform, endozoochory, maximum height and maximum diameter, before we calculated the taxonomic, functional and phylogenetic diversity of plant communities. Species richness, taxonomic, functional and phylogenetic diversities were lower in plots close to the roads, confirming roads as sources of disturbances. The phylogenetic structure of the Caatinga vegetation near roads was clustered, indicating environmental filtering by herbivory as the main pervasive disturbance in Caatinga ecosystems, since traits related to herbivory deterrence were conserved within phylogenetic lineages and were filtered in near roads. Thus, roads should be considered degradation conduits causing taxonomic, phylogenetic and functional impoverishment of Caatinga vegetation.


2007 ◽  
Vol 67 (4 suppl) ◽  
pp. 839-847 ◽  
Author(s):  
FA. Fernandes ◽  
GP. Fernández-Stolz ◽  
CM. Lopes ◽  
TRO. Freitas

The goal of conservation biology should be related to the preservation of species and also to the evolutionary and ecological processes that were responsible to form them and that are still acting. We review the conservation status of the species of tuco-tuco (Ctenomys torquatus, C. lami, C. minutus, and C. flamarioni) from southern Brazil, and relate these data to the geological history of a particular area in that region, the Coastal Plain of the States of Rio Grande do Sul and Santa Catarina. The implications of the data on these species from the Southeastern Brazil are also discussed in relation to the evolution and risk of extinction of these subterranean rodents.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Mao Wang ◽  
Jinshi Xu ◽  
Yongfu Chai ◽  
Yaoxin Guo ◽  
Xiao Liu ◽  
...  

Two contradictory niche-based processes, environmental filtering and competitive exclusion, are important ecological processes in community assembly. Quercus wutaishanica forests are the climax communities in the Qinling Mountains and the Loess Plateau, China. Since these areas are characterized by different climate and evolutionary histories, these forests could be a suitable study system to test the phylogenetic niche conservatism hypothesis. We compared variation in community assembly of two distinct Q. wutaishanica forest communities and analyzed how the variations are formed. Quercus wutaishanica forest communities had significantly different species pool, phylogenetic structure and phylogenetic diversity between the two regions that were driven by inconsistency in environment conditions and evolutionary history at the local scale. Soil ammonium nitrogen, soil water content, and nitrate nitrogen play a major role in phylogenetic beta diversity patterns. The effect of environmental filtering on community assembly was more significant on the Loess Plateau than in the Qinling Mountains. Our study also found that local environment is important in mediating the patterns of phylogenetic structure. These findings provide insights into the mechanisms of local community assembly.


2021 ◽  
Author(s):  
Thiago Augusto Leão-Pires ◽  
Amom Mendes Luis ◽  
Ricardo Jannini Sawaya

Abstract Investigate how ecological and/or evolutionary factors could affect the structure of ecological communities is a central demand in ecology. In order to better understand that we assessed phylogenetic and functional structure of 33 tadpole communities in the Atlantic Forest coastal plains of Southeastern Brazil. We tested the assumption that phylogenetic conservatism drive tadpole traits. We identified 32 communities with positive values of phylogenetic structure, with 18 of those being significantly clustered. Twelve of 33 communities showed aggregated functional structure. Trait diversity was skewed towards the root, indicating phylogenetic trait conservatism and evolutionary factors as important drivers of tadpoles community structure. Six out of 11 environmental variables were selected in the best explanatory model of phylogenetic structure. Water conductivity, external and internal diversity of vegetation structure, canopy cover, and dissolved oxygen were negatively related with phylogenetic clustering, whereas presence of potential fish predators was positively related. Four of those environmental variables and area were also included in the best explanatory model of functional structure. All variables represent factors related to performance, survivorship, and distribution of anuran communities. From the 12 functionally structured communities, 10 were also phylogenetically structured. Thus, environmental factors may be acting as filters, interacting with phylogenetically conserved species traits, and driving linage occurrence in tadpole communities. Our study provides evidence that phylogenetic and functional structure in vertebrates are a result of interacting ecological and evolutionary agents, resulting in structured anuran assemblages.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190245 ◽  
Author(s):  
Thomas Scheuerl ◽  
Johannes Cairns ◽  
Lutz Becks ◽  
Teppo Hiltunen

Predation is one of the key ecological mechanisms allowing species coexistence and influencing biological diversity. However, ecological processes are subject to contemporary evolutionary change, and the degree to which predation affects diversity ultimately depends on the interplay between evolution and ecology. Furthermore, ecological interactions that influence species coexistence can be altered by reciprocal coevolution especially in the case of antagonistic interactions such as predation or parasitism. Here we used an experimental evolution approach to test for the role of initial trait variation in the prey population and coevolutionary history of the predator in the ecological dynamics of a two-species bacterial community predated by a ciliate. We found that initial trait variation both at the bacterial and ciliate level enhanced species coexistence, and that subsequent trait evolutionary trajectories depended on the initial genetic diversity present in the population. Our findings provide further support to the notion that the ecology-centric view of diversity maintenance must be reinvestigated in light of recent findings in the field of eco-evolutionary dynamics.


2009 ◽  
Vol 277 (1678) ◽  
pp. 97-104 ◽  
Author(s):  
Susan G. Letcher

The phylogenetic structure of ecological communities can shed light on assembly processes, but the focus of phylogenetic structure research thus far has been on mature ecosystems. Here, I present the first investigation of phylogenetic community structure during succession. In a replicated chronosequence of 30 sites in northeastern Costa Rica, I found strong phylogenetic overdispersion at multiple scales: species present at local sites were a non-random assemblage, more distantly related than chance would predict. Phylogenetic overdispersion was evident when comparing the species present at each site with the regional species pool, the species pool found in each age category to the regional pool or the species present at each site to the pool of species found in sites of that age category. Comparing stem size classes within each age category, I found that during early succession, phylogenetic overdispersion is strongest in small stems. Overdispersion strengthens and spreads into larger size classes as succession proceeds, corroborating an existing model of forest succession. This study is the first evidence that succession leaves a distinct signature in the phylogenetic structure of communities.


2022 ◽  
Author(s):  
Vitor de Andrade Kamimura ◽  
Gabriel Mendes Marcusso ◽  
Gabriel Pavan Sabino ◽  
Marco Antonio Assis ◽  
Carlos Alfredo Joly ◽  
...  

Abstract Unveiling the ecological processes driving diversity and its relationship to the environment remains a central goal in ecological studies. Here, we investigated the elevation effect on plant diversity patterns of tropical rainforests, using beta-, phylogenetic and alpha diversities. To do so, we compiled a forest dataset with 22,236 trees (DBH ≥ 4.8 cm) from 17 plots of 1 ha each along an elevational gradient (0 – 1,200 m a.s.l) in the Atlantic Forest of Southeastern Brazil. We found high phylogenetic and species rates of turnover – beta-diversity - along the elevational gradient. Alpha phylodiversity showed a monotonic decrease with increasing elevation, including or not fern species (a distantly related clade usually ignored in tropical ecology studies), while the phylogenetic structure was highly affected by the inclusion of fern trees. Species diversity showed a unimodal pattern for the whole community, and different patterns for the richest families. The diversity pattern of the whole community emerges from differences among species distribution of the richest families, while phylogenetic diversity seems to be gradually filtered by elevation. At intermediate elevations, higher species diversification within families might have led to different strategies and cooccurrence in tropical rainforests. We also showed that intricate effects of elevation in species assemblages can be better assessed using both ecological and evolutionary approaches, stressing the importance of species selection in diversity analyzes. Finally, we demonstrate that elevation has different effects on the species distributions of the richest families and warn that these differences should be considered in conservation planning.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Sunshine A. Van Bael ◽  
Catalina Estrada ◽  
William T. Wcislo

Many organisms participate in symbiotic relationships with other organisms, yet studies of symbioses typically have focused on the reciprocal costs and benefits within a particular host-symbiont pair. Recent studies indicate that many ecological interactions involve alliances of symbionts acting together as mutualistic consortia against other consortia. Such interacting consortia are likely to be widespread in nature, even if the interactions often occur in a cryptic fashion. Little theory and empirical data exist concerning how these complex interactions shape ecological outcomes in nature. Here, we review recent work on fungal-fungal interactions between two consortia: (i) leaf-cutting ants and their symbiotic fungi (the latter grown as a food crop by the former) and (ii) tropical plants and their foliar endophytes (the cryptic symbiotic fungi within leaves of the former). Plant characteristics (e.g., secondary compounds or leaf physical properties of leaves) are involved in leaf-cutting ant preferences, and a synthesis of published information suggests that these plant traits could be modified by fungal presence. We discuss potential mechanisms for how fungal-fungal interactions proceed in the leaf-cutting ant agriculture and suggest themes for future research.


2021 ◽  
Vol 7 (8) ◽  
pp. 587
Author(s):  
Danielle Hamae Yamauchi ◽  
Hans Garcia Garces ◽  
Marcus de Melo Teixeira ◽  
Gabriel Fellipe Barros Rodrigues ◽  
Leila Sabrina Ullmann ◽  
...  

Soil is the principal habitat and reservoir of fungi that act on ecological processes vital for life on Earth. Understanding soil fungal community structures and the patterns of species distribution is crucial, considering climatic change and the increasing anthropic impacts affecting nature. We evaluated the soil fungal diversity in southeastern Brazil, in a transitional region that harbors patches of distinct biomes and ecoregions. The samples originated from eight habitats, namely: semi-deciduous forest, Brazilian savanna, pasture, coffee and sugarcane plantation, abandoned buildings, owls’ and armadillos’ burrows. Forty-four soil samples collected in two periods were evaluated by metagenomic approaches, focusing on the high-throughput DNA sequencing of the ITS2 rDNA region in the Illumina platform. Normalized difference vegetation index (NDVI) was used for vegetation cover analysis. NDVI values showed a linear relationship with both diversity and richness, reinforcing the importance of a healthy vegetation for the establishment of a diverse and complex fungal community. The owls’ burrows presented a peculiar fungal composition, including high rates of Onygenales, commonly associated with keratinous animal wastes, and Trichosporonales, a group of basidiomycetous yeasts. Levels of organic matter and copper influenced all guild communities analyzed, supporting them as important drivers in shaping the fungal communities’ structures.


PalZ ◽  
2021 ◽  
Author(s):  
Xingliang Zhang ◽  
Degan Shu

AbstractThe Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.


Sign in / Sign up

Export Citation Format

Share Document