scholarly journals Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand

2008 ◽  
Vol 20 (3) ◽  
pp. 233-245 ◽  
Author(s):  
Sandra J. Bucci ◽  
Fabian G. Scholz ◽  
Guillermo Goldstein ◽  
Frederick C. Meinzer ◽  
Augusto C. Franco ◽  
...  

We determined adjustments in physiology and morphology that allow Neotropical savanna trees from central Brazil (Cerrado) to avoid water deficits and to maintain a nearly constant internal water balance despite seasonal changes in precipitation and air saturation deficit (D). Precipitation in the study area is highly seasonal with about five nearly rainless months during which D is two fold higher compared to wet season values. As a consequence of the seasonal fluctuations in rainfall and D, soil water potential changes substantially in the upper 100 cm of soil, but remains nearly constant below 2 m depth. Hydraulic architecture and water relations traits of Cerrado trees adjusted during the dry season to prevent increasing water deficits and insure homeostasis in minimum leaf water potential ψL and in total daily water loss per plant (isohydry). The isohydric behavior of Cerrado trees was the result of a decrease in total leaf surface area per tree, a strong stomatal control of evaporative losses, an increase in leaf-specific hydraulic conductivity and leaf hydraulic conductance and an increase in the amount of water withdrawn from internal stem storage, during the dry season. Water transport efficiency increased in the same proportion in leaves and terminal stems during the dry season. All of these seasonal adjustments were important for maintaining ψL above critical thresholds, which reduces the rate of embolism formation in stems and help to avoid turgor loss in leaf tissues still during the dry season. These adjustments allow the stems of most Cerrado woody species to operate far from the point of catastrophic dysfunction for cavitation, while leaves operate close to it and experience embolism on a daily basis, especially during the dry season.

2004 ◽  
Vol 52 (4) ◽  
pp. 509 ◽  
Author(s):  
Kate McClenahan ◽  
Catriona Macinnis-Ng ◽  
Derek Eamus

Seasonal comparisons of leaf water potential, root biomass, hydraulic architecture, xylem embolism and xylem dimensions were made for eight woody species in four diverse habitats (mangroves, coastal heathland, ridge-top woodland and river-flat woodland). In most comparisons, pre-dawn and minimum leaf water potentials were lower in winter than in summer, a result attributed to lower rainfall and a smaller root biomass in winter than in summer. Branch hydraulic conductivities (per unit transverse area, sapwood area or leaf area) were generally larger in summer than in winter across all species in all habitats. An inverse relationship between Huber value and conductivity was observed across all four habitats. Increased solar radiation and evaporative demand in the summer was associated with an increased percentage loss of xylem conductance arising from embolism, compared with winter. These results are discussed in the context of patterns and relationships among water relations, microclimate and hydraulic architecture.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xue Zhu ◽  
Jiyue Qin ◽  
Chongyang Tan ◽  
Kang Ning

Abstract Background Most studies investigating human gut microbiome dynamics are conducted on humans living in an urban setting. However, few studies have researched the gut microbiome of the populations living traditional lifestyles. These understudied populations are arguably better subjects in answering human-gut microbiome evolution because of their lower exposure to antibiotics and higher dependence on natural resources. Hadza hunter-gatherers in Tanzania have exhibited high biodiversity and seasonal patterns in their gut microbiome composition at the family level, where some taxa disappear in one season and reappear later. Such seasonal changes have been profiled, but the nucleotide changes remain unexplored at the genome level. Thus, it is still elusive how microbial communities change with seasonal changes at the genome level. Results In this study, we performed a strain-level single nucleotide polymorphism (SNP) analysis on 40 Hadza fecal metagenome samples spanning three seasons. With more SNP presented in the wet season, eight prevalent species have significant SNP enrichment with the increasing number of SNP calling by VarScan2, among which only three species have relatively high abundances. Eighty-three genes have the most SNP distributions between the wet season and dry season. Many of these genes are derived from Ruminococcus obeum, and mainly participated in metabolic pathways including carbon metabolism, pyruvate metabolism, and glycolysis. Conclusions Eight prevalent species have significant SNP enrichments with the increasing number of SNP, among which only Eubacterium biforme, Eubacterium hallii and Ruminococcus obeum have relatively high species abundances. Many genes in the microbiomes also presented characteristic SNP distributions between the wet season and the dry season. This implies that the seasonal changes might indirectly impact the mutation patterns for specific species and functions for the gut microbiome of the population that lives in traditional lifestyles through changing the diet in wet and dry seasons, indicating the role of these variants in these species’ adaptation to the changing environment and diets.


2012 ◽  
Vol 63 (9) ◽  
pp. 788 ◽  
Author(s):  
N. E. Pettit ◽  
T. D. Jardine ◽  
S. K. Hamilton ◽  
V. Sinnamon ◽  
D. Valdez ◽  
...  

The present study indicates the critical role of hydrologic connectivity in floodplain waterholes in the wet–dry tropics of northern Australia. These waterbodies provide dry-season refugia for plants and animals, are a hotspot of productivity, and are a critical part in the subsistence economy of many remote Aboriginal communities. We examined seasonal changes in water quality and aquatic plant cover of floodplain waterholes, and related changes to variation of waterhole depth and visitation by livestock. The waterholes showed declining water quality through the dry season, which was exacerbated by more frequent cattle usage as conditions became progressively drier, which also increased turbidity and nutrient concentrations. Aquatic macrophyte biomass was highest in the early dry season, and declined as the dry season progressed. Remaining macrophytes were flushed out by the first wet-season flows, although they quickly re-establish later during the wet season. Waterholes of greater depth were more resistant to the effects of cattle disturbance, and seasonal flushing of the waterholes with wet-season flooding homogenised the water quality and increased plant cover of previously disparate waterholes. Therefore, maintaining high levels of connectivity between the river and its floodplain is vital for the persistence of these waterholes.


2016 ◽  
Vol 34 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Cristihian Jarri Bayona-Rodríguez ◽  
Iván Ochoa-Cadavid ◽  
Hernán Mauricio Romero

Elaeis guineensis palms and its interspecific hybrid (E. oleifera x E. guineensis) were planted in 2004 in the Cuernavaca farm of Unipalma S.A., located in the municipality of Paratebueno (Cundinamarca, Colombia). The palms were planted in two fields: Mecasaragua and Aurora. The first field has never been irrigated, and the second one (Aurora) has always been flood-irrigated during the dry season according to the parameters of the plantation. In this study, physiological parameters (gas exchange and water potential) were assessed in three seasons of the year 2013 (dry season, dry-to-wet transition season and wet season). Significant gas exchange differences were found among the seasons in the field with no irrigation (Mecasaragua). Likewise, differences between the genetic materials were observed during the dry season. For example, the photosyn thesis decreased by 75% compared with the palms planted in the irrigated field. No differences among seasons or materials were found in the irrigated field (Aurora). E. guineensis palms were more sensitive to water stress compared with the OxG interspecific hybrid. Both genetic materials responded rapidly to the first rains by leveling their photosynthetic rates and demonstrated an excellent capacity to recover from water stress.


1989 ◽  
Vol 16 (5) ◽  
pp. 415 ◽  
Author(s):  
CR Jensen ◽  
IE Henson ◽  
NC Turner

Plants of Lupinus cosentinii Guss. cv. Eregulla were grown in a sandy soil in large containers in a glasshouse and exposed to drought by withholding water. Under these conditions stomatal closure had previously been shown to be initiated before a significant reduction in leaf water potential was detected. In the experiments reported here, no significant changes were found in water potential or turgor pressure of roots or leaves when a small reduction in soil water potential was induced which led to a 60% reduction in leaf conductance. The decrease in leaf conductance and root water uptake closely paralleled the fraction of roots in wet soil. By applying observed data of soil water and root characteristics, and root water uptake for whole pots in a single-root model, the average water potential at the root surface was calculated. Potential differences for water transport in the soil-plant system, and the resistances to water flow were estimated using the 'Ohm's Law' analogy for water transport. Soil resistance was negligible or minor, whereas the root resistance accounted for 61-72% and the shoot resistance accounted for about 30% of the total resistance. The validity of the measurements and calculations is discussed and the possible role of root- to-shoot communication raised.


1989 ◽  
Vol 16 (2) ◽  
pp. 141 ◽  
Author(s):  
P Bayliss ◽  
WJ Freeland

Aerial surveys of coastal waters (27 216 km2) in the western Gulf of Carpentaria during the dry season of 1984 and wet season of 1985 indicated no major seasonal changes in distribution and relative abundance of dugongs. Minimum population size in the dry season was estimated as 16 816 � 2946 (standard error), with a relative density of 0.62 k 0.11 km-2, and that for the wet season 16 846 + 3257, with a relative density of 0.62 � 0.12 km-2. The estimates exclude 5% of observations which could have been either dugongs or Irrawaddy dolphins, and were corrected for submerged dugongs and those missed on the surface. Dugongs were unevenly distributed over the study area, and neither mean group size nor proportion of calves varied between seasons. Dugong abundance was correlated with area of available seagrass. The catch rate of dugongs by Aboriginal people off Numbulwar decreased six-fold between the 1960s and 1985 (60 to 10 p.a.), possibly due to excessive hunting.


1978 ◽  
Vol 91 (1) ◽  
pp. 103-116 ◽  
Author(s):  
P. J. Gregory ◽  
M. McGowan ◽  
P. V. Biscoe

SummaryVolumetric soil water content and soil water potential were measured beneath a winter wheat crop during the 1975 growing season. Almost no rain fell between mid-May and mid-July and the soil dried continuously until the potential was less than – 20 bars to a depth of 80 cm. Evaporation was separated from drainage by denning an ‘effective rooting depth’ at which the hydraulic gradient was zero.Rates of water uptake per unit length of root (inflow) were calculated for the whole soil profile and for individual soil layers. Generally, inflow decreased throughout the period of measurement from a maximum of 2·5 × 10–3 to a minimum of 0·66 × 10–3 ml water/cm root/day. Values in individual layers were frequently higher than the mean inflow and the importance of a few deep roots in taking up water during a dry season is emphasized. A similar correlation between inflow and soil water potential was found to apply for the 0–30 cm and 30–60 cm layers during the period of continual soil drying. This relationship represents the maximum inflow measured at a given soil water potential; actual inflow at any particular time depends upon the interrelationship of atmospheric demand, soil water potential and the distribution of root length in the soil.


2008 ◽  
Vol 5 (6) ◽  
pp. 1797-1808 ◽  
Author(s):  
W. L. Kutsch ◽  
N. Hanan ◽  
B. Scholes ◽  
I. McHugh ◽  
W. Kubheka ◽  
...  

Abstract. The principal mechanisms that connect carbon fluxes with water relations in savanna ecosystems were studied by using eddy covariance method in a savanna ecosystem at Kruger National Park, South Africa. Since the annual drought and rewetting cycle is a major factor influencing the function of savanna ecosystems, this work focused on the close inter-connection between water relations and carbon fluxes. Data from a nine-month measuring campaign lasting from the early wet season to the late dry season were used. Total ecosystem respiration showed highest values at the onset of the growing season, a slightly lower plateau during the main part of the growing season and a continuous decrease during the transition towards the dry season. The regulation of canopy conductance was changed in two ways: changes due to phenology during the course of the growing season and short-term acclimation to soil water conditions. The most constant parameter was water use efficiency that was influenced by VPD during the day but the VPD response curve of water usage did change only slightly during the course of the growing season and decreased by about 30% during the transition from wet to dry season. The regulation of canopy conductance and photosynthetic capacity were closely related. This observation meets recent leaf-level findings that stomatal closure triggers down-regulation of Rubisco during drought. Our results may show the effects of these processes on the ecosystem scale.


Sign in / Sign up

Export Citation Format

Share Document