scholarly journals Behavior of granular rubber waste tire reinforced soil for application in geosynthetic reinforced soil wall

2015 ◽  
Vol 8 (4) ◽  
pp. 567-576 ◽  
Author(s):  
G. G. D. RAMIREZ ◽  
M. D. T. CASAGRANDE ◽  
D. FOLLE ◽  
A. PEREIRA ◽  
V. A. PAULON

AbstractLarge quantities of waste tires are released to the environment in an undesirable way. The potential use of this waste material in geotechnical applications can contribute to reducing the tire disposal problem and to improve strength and deformation characteristics of soils. This paper presents a laboratory study on the effect of granular rubber waste tire on the physical properties of a clayey soil. Compaction tests using standard effort and consolidated-drained triaxial tests were run on soil and mixtures. The results conveyed an improvement in the cohesion and the angle of internal friction the clayey soil-granular rubber mixture, depending on the level of confining stress. These mixtures can be used like backfill material in soil retaining walls replacing the clayey soil due to its better strength and shear behavior and low unit weight. A numerical simulation was conducted for geosynthetic reinforced soil wall using the clayey soil and mixture like backfill material to analyzing the influence in this structure.

2014 ◽  
Vol 600 ◽  
pp. 585-596 ◽  
Author(s):  
Gary G.D. Ramirez ◽  
Michéle D.T. Casagrande

Large quantities of waste tires are released to the environment in an undesirable way. The amount of this scrap is increasing every year. The potential use of this waste material in geotechnical applications can contribute to reducing the tire disposal problem and to improve strength and deformation characteristics of soils. This paper presents a laboratory study on the effect of granular rubber waste tire on the physical properties of a clayey soil. Clayey soil was mixed with 10% of granular rubber by dry weight. Grain size, Atterberg limits analyses and compaction tests using standard effort were performed on the clayey soil. Consolidated-drained triaxial tests at confining stresses of 50, 100, 200 and 400 kPa were run on soil and mixture. The results conveyed that the geotechnical characteristics are influenced by the addition of grained tire, improving the cohesion and the angle of internal friction the clayey soil-granular rubber mixture. This improvement depends on the level of confining stress. The compaction test results indicated that the dry unit weights and the optimum moisture for the mixture decreased in relation to clayey soil. Therefore, this mixture can be used as lightweight fill material due to its low specific weight, solving low bearing capacity and high settlement problems of embankments on soft compressible soils.


2019 ◽  
Vol 9 (5) ◽  
pp. 900 ◽  
Author(s):  
Yixian Wang ◽  
Panpan Guo ◽  
Xian Li ◽  
Hang Lin ◽  
Yan Liu ◽  
...  

The beneficial role of combining fiber reinforcement with lime stabilization in altering soil behavior has been established in the literature. However, the coupling effect of their combination still remains unclear in terms of its magnitude and microscopic mechanism, especially for natural fibers with special microstructures. The objective of this study was to investigate the coupling effect of wheat straw fiber reinforcement and lime stabilization on the mechanical behavior of Hefei clayey soil. To achieve this, an experimental program including unconsolidated–undrained (UU) triaxial tests and SEM analysis was implemented. Static compaction test samples were prepared on untreated soil, fiber-reinforced soil, lime-stabilized soil, and lime-stabilized/fiber-reinforced soil at optimum moisture content with determining of the maximum dry density of the untreated soil. The lime was added in three different contents of 2%, 4%, and 6%, and 13 mm long wheat straw fiber slices with a cross section one-quarter that of the intact ones were mixed in at 0.2%, 0.4%, and 0.6% by dry weight of soil. Analysis of the derived results indicated that the addition of a small amount of wheat straw fibers into lime-stabilized soil improved the intensity of the strain-softening behavior associated with mere lime stabilization. The observed evidence that the shear strength increase brought by a combination of 0.4% fiber reinforcement and 4% lime stabilization was smaller than the summation of the shear strength increases brought by their presence alone in a sample demonstrated a coupling effect between fiber reinforcement and lime stabilization. This coupling effect was also detected in the comparisons of the secant modulus and failure pattern between the combined treatment and the individual treatments. These manifestations of the coupling effect were explained by a microscopic mechanism wherein the fiber reinforcing effect was made more effective by the ways in which lime chemically stabilized the soil and lime stabilization development was quickened by the water channels passing through the surfaces and honeycomb pores of the wheat straw fibers.


2006 ◽  
Vol 43 (12) ◽  
pp. 1225-1237 ◽  
Author(s):  
Richard J Bathurst ◽  
Nicholas Vlachopoulos ◽  
Dave L Walters ◽  
Peter G Burgess ◽  
Tony M Allen

Current limit equilibrium-based design methods for the internal stability design of geosynthetic reinforced soil walls in North America are based on the American Association of State Highway and Transportation Officials (AASHTO) Simplified Method. A deficiency of this approach is that the influence of the facing type on reinforcement loads is not considered. This paper reports the results of two instrumented full-scale walls constructed in a large test facility at the Royal Military College of Canada. The walls were nominally identical except one wall was constructed with a stiff face and the other with a flexible wrapped face. The peak reinforcement loads in the flexible wall were about three and a half times greater than the stiff-face wall at the end of construction and about two times greater at the end of surcharging. The stiff-face wall analysis using the Simplified Method gave a maximum reinforcement load value that was one and a half times greater than the measured value at the end of construction. Furthermore, the surcharge pressure required to reach the creep-limited strength of the reinforcement was about two times greater than the predicted value. The results demonstrate quantitatively that a stiff facing in a reinforced soil wall is a structural component that can lead to significant reductions in reinforcement loads compared to flexible facing systems.Key words: geosynthetics, retaining walls, reinforced soil, wrapped face, structural facings.


Sign in / Sign up

Export Citation Format

Share Document