scholarly journals Characterization of pervious concrete focusing on non-destructive testing

2020 ◽  
Vol 13 (3) ◽  
pp. 483-500 ◽  
Author(s):  
S. T. MARTINS FILHO ◽  
E. M. BOSQUESI ◽  
J. R. FABRO ◽  
R. PIERALISI

Abstract This study aims to investigate the properties of pervious concrete focusing on characterization tests by the Ultrasound Method. For this, three mixtures were produced with the paste/aggregate (P/Ag) ratio ranging from 0.45 to 0.65, water to cement ratio (w/c) of 0.3, and all the specimens were compacted with a steel rod. The application of the ultrasound method deserves special attention for the characterization of pervious concrete, due to a lack of research and the potential to develop analytical models for predicting properties from ultrasonic pulse velocity (UPV) as an independent variable. The UPV obtained in this study ranged from 3642 to 4262 m/s for an approximately 12% reduction in porosity, with a correlation (R²) of 0.91. It is noteworthy that the high porosity of pervious concrete causes attenuation of the ultrasonic wave. The measurements of UPV had higher values for specimens with higher densities (R²=0.87), higher compressive and tensile strengths (R² of 0.79 and 0.84, resp.), and lower permeability (R² = 0.91).

2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


2021 ◽  
Vol 1164 ◽  
pp. 77-86
Author(s):  
Bogdan Bolborea ◽  
Sorin Dan ◽  
Claudiu Matei ◽  
Aurelian Gruin ◽  
Cornelia Baeră ◽  
...  

Developing a non-destructive method which delivers fast, accurate and non-invasive results regarding the concrete compressive strength, is an important issue, currently investigated by many researchers all over the world. Different methodologies, like using the simple non-destructive testing (NDT) or the fusion of different techniques approach, were taken into consideration in order to find the optimal, most suitable method. The purpose of this paper is to present a new approach in this direction. The methodology consists in predicting the concrete compressive strength through ultrasonic testing, for non-destructive determination of the dynamic and static moduli of elasticity. One important, basic assumption of the proposed methodology considers values provided by technical literature for concrete dynamic Poisson’s coefficient. The air-dry density was experimentally determined on concrete cores. The dynamic modulus of elasticity was also experimentally determined by using the ultrasonic pulse velocity (UPV) method on concrete cores. Further on, the static modulus of elasticity and the concrete compressive strength can be mathematically calculated, by using the previously mentioned parameters. The experimental procedures were performed on concrete specimens, namely concrete cores extracted from the raft foundation of a multistorey building; initially they were subjected to the specific NDT, namely ultrasonic testing, and the validation of the results and the proposed methodology derives from the destructive testing of the specimens. The destructive testing is generally recognized as the most trustable method. The precision of the proposed method, established with respect to the destructive testing, revealed a high level of confidence, exceeding 90% (as mean value). It was noticed that even the cores with compressive strength outside of mean range interval (minimum and maximum values) presented high rate of precision, not influencing the overall result. The high rate of accuracy makes this method a suitable research background for further investigations, in order to establish a reliable NDT methodology which could substitute the very invasive and less convenient, destructive method.


2018 ◽  
Vol 792 ◽  
pp. 166-169
Author(s):  
Yu Ren Wang ◽  
Loan T.Q. Ngo ◽  
Yi Fan Shih ◽  
Yen Ling Lu ◽  
Yi Ming Chen

SONREB method is a non-destructive testing (NDT) method for estimating the concrete compressive strength. It is conducted by combining two popular NDT methods: ultrasonic pulse velocity (UPV) test and rebound hammer (RH) test. Several researches have been attempted to find the correlation of the different testing method data with actual compressive strength. This research proposes a new Artificial Intelligence based approach, Artificial Neural Networks (ANNs), to estimate the concrete compressive strength using the UPV and RH test data. Data from a total of 315 cylinder concrete samples are collected to develop and validate the ANFIS prediction model. The model prediction results are compared with actual compressive strength using mean absolute percentage error (MAPE). With the adaption of ANFIS, the estimation error of SONREB test can be reduced to 5.98% (measured by MAPE).


2021 ◽  
Vol 1197 (1) ◽  
pp. 012054
Author(s):  
Ragini Kondalkar ◽  
Nikhil H. Pitale ◽  
K.R. Dabhekar ◽  
D.P. Mase

Abstract In India there are infinite old structures that are at the verge of damages. There are many buildings which have reduced their strength due to time passes, due to deterioration of concrete from structural element, due to development of cracks. The structure is a combination of load carrying members, damages in members cause failure of structure and it is harmful for living beings. To prevent old structure from failure the technique is adopted know as Non-Destructive Testing (NDT). With the help of non-destructive testing auditing of an old structure is get easier. NDT examine the total health of an infrastructure in order to check strength and stability of building. NDT is a bunch of various testing consist of Ultrasonic pulse velocity test (UPV), Rebound hammer test (RHT), Half-cell test, etc. Conducting NDT on building and analyzing testing result decide to repair building as per IS code, technique like grouting, Retrofitting, etc. to increase strength and stability of building. In this project structural has to be done on old structure which is situated at Nagpur. Audit done by NDT consist of Ultra-sonic pulse velocity test, Rebound hammer test, Half-cell test. After analyzing all test result including visual inspection it is found that structure need to repair and retrofitted to make it safe and stable for all static loadings. Column jacketing also provide to structure.


Author(s):  
Ana Carolina Costa Viana ◽  
Poliana Dias de Moraes ◽  
Ivo José Padaratz

Abstract The ultrasonic pulse velocity, obtained by ultrasonic non-destructive testing, has been applied to evaluate the concrete integrity. The attenuation parameters have shown more sensitivity to damage detection in the microstructure of concrete since they consider the entire ultrasonic waveform. However, it is still necessary to evaluate the sensitivity of those parameters to thermally damaged concrete. This work aims to assess the behavior and the sensitivity of the following ultrasonic parameters: pulse and group velocities, maximum amplitude, total energy, accumulated energy, and time instants corresponding to 25%, 50%, and 75% of the energy, in detecting changes due to thermal degradation of the concrete. A sample of 39 cylindrical concrete specimens with 100 mm in diameter and 300 mm in length and C25 strength class was used. The sample was distributed into 5 groups heated between 20 and 400 ºC until the internal temperature of the specimens became homogeneous. The groups were cooled inside a muffle furnace until reaching 150 ºC. Subsequently, they were exposed to the ambient temperature and humidity of the laboratory environment for, at least, 24 hours prior to the tests of mass loss, ultrasound, and compressive strength. The results show that the ultrasonic parameters are sensitive to the thermal degradation of the concrete. The pulse velocity, the accumulated energy, and the time instants corresponding to percentages of the energy decrease monotonically as the temperature increases. The group velocity shows significant dispersions, while the maximum amplitude and the total energy increase at 200 ºC. The results led to the conclusion that the pulse velocity is the least sensitive parameter, while the time instants corresponding to 25%, 50%, and 75% of the energy are the most sensitive parameters in detecting changes due to thermal degradation of the concrete.


Author(s):  
Amanda Purwanto ◽  
Abdul Ro’uf

Modulus of elasticity of concrete usually measured by Destructive Testing which is not considered as an effective way, because It will destroy the concrete. Ultrasonic Pulse Velocity can be a solution to measure value of modulus of elasticity without destructing it. The concept of the system is to look for velocity of wave, then put the value into modulus elasticity formula.UPV system will transmit ultrasonic wave through concrete. HC-SR04 used for generating 40 kHz wave, increasing voltage of wave on receiver, and calculating time travel. The voltage of wave sent by HC-SR04 is only about 10 volt, so that power and voltage of wave has to be amplified. Piezoelectric is used as a transducer which can converts electrical to mechanical energy.  The results of this research shows that error value on wave velocity measurement have an average value for about 18,2% compared to result of UPV Pundit. Static modulus of elasticity from compressive test is compared to value of dynamic modulus of elasticity that is obtained by UPV system with HC-SR04. Ratio between two values is about 45% - 249%.


2014 ◽  
Vol 628 ◽  
pp. 85-89 ◽  
Author(s):  
Emilia Vasanelli ◽  
Maria Sileo ◽  
Giovanni Leucci ◽  
Angela Calia ◽  
Maria Antonietta Aiello ◽  
...  

In this paper, the use of ultrasonic pulse velocity (UPV) testing as a reliable technique to determine the compressive strength of a calcarenitic stone typical of Salento (South of Italy), known as Lecce Stone (LS) has been investigated. The scope of the experimental research is to establish correlations between the results obtained by non-destructive and destructive tests, in order to reduce the use of destructive methods within the diagnostic procedures for the mechanical analysis and qualification of ancient masonries. Furthermore, the presence of water as a variable affecting the test was investigated. The results of the tests show that the UPV values are well correlated with the compressive strengths and this method showed to be efficient in predicting the strength of LS.


Sign in / Sign up

Export Citation Format

Share Document