Estimating the Concrete Compressive Strength by Using the Concrete Ultrasonic Pulse Velocity and Moduli of Elasticity

2021 ◽  
Vol 1164 ◽  
pp. 77-86
Author(s):  
Bogdan Bolborea ◽  
Sorin Dan ◽  
Claudiu Matei ◽  
Aurelian Gruin ◽  
Cornelia Baeră ◽  
...  

Developing a non-destructive method which delivers fast, accurate and non-invasive results regarding the concrete compressive strength, is an important issue, currently investigated by many researchers all over the world. Different methodologies, like using the simple non-destructive testing (NDT) or the fusion of different techniques approach, were taken into consideration in order to find the optimal, most suitable method. The purpose of this paper is to present a new approach in this direction. The methodology consists in predicting the concrete compressive strength through ultrasonic testing, for non-destructive determination of the dynamic and static moduli of elasticity. One important, basic assumption of the proposed methodology considers values provided by technical literature for concrete dynamic Poisson’s coefficient. The air-dry density was experimentally determined on concrete cores. The dynamic modulus of elasticity was also experimentally determined by using the ultrasonic pulse velocity (UPV) method on concrete cores. Further on, the static modulus of elasticity and the concrete compressive strength can be mathematically calculated, by using the previously mentioned parameters. The experimental procedures were performed on concrete specimens, namely concrete cores extracted from the raft foundation of a multistorey building; initially they were subjected to the specific NDT, namely ultrasonic testing, and the validation of the results and the proposed methodology derives from the destructive testing of the specimens. The destructive testing is generally recognized as the most trustable method. The precision of the proposed method, established with respect to the destructive testing, revealed a high level of confidence, exceeding 90% (as mean value). It was noticed that even the cores with compressive strength outside of mean range interval (minimum and maximum values) presented high rate of precision, not influencing the overall result. The high rate of accuracy makes this method a suitable research background for further investigations, in order to establish a reliable NDT methodology which could substitute the very invasive and less convenient, destructive method.

2018 ◽  
Vol 792 ◽  
pp. 166-169
Author(s):  
Yu Ren Wang ◽  
Loan T.Q. Ngo ◽  
Yi Fan Shih ◽  
Yen Ling Lu ◽  
Yi Ming Chen

SONREB method is a non-destructive testing (NDT) method for estimating the concrete compressive strength. It is conducted by combining two popular NDT methods: ultrasonic pulse velocity (UPV) test and rebound hammer (RH) test. Several researches have been attempted to find the correlation of the different testing method data with actual compressive strength. This research proposes a new Artificial Intelligence based approach, Artificial Neural Networks (ANNs), to estimate the concrete compressive strength using the UPV and RH test data. Data from a total of 315 cylinder concrete samples are collected to develop and validate the ANFIS prediction model. The model prediction results are compared with actual compressive strength using mean absolute percentage error (MAPE). With the adaption of ANFIS, the estimation error of SONREB test can be reduced to 5.98% (measured by MAPE).


2021 ◽  
Vol 318 ◽  
pp. 03004
Author(s):  
AbdulMuttalib I. Said ◽  
Baqer Abdul Hussein Ali

This paper has carried out an experimental program to establish a relatively accurate relation between the ultrasonic pulse velocity (UPV) and the concrete compressive strength. The program involved testing concrete cubes of (100) mm and prisms of (100×100×300) cast with specified test variables. The samples are tested by using ultrasonic test equipment with two methods, direct ultrasonic pulse (DUPV) and surface (indirect) ultrasonic pulse (SUPV) for each sample. The obtained results were used as input data in the statistical program (SPSS) to predict the best equation representing the relation between the compressive strength and the ultrasonic pulse velocity. In this research 383 specimens were tested, and an exponential equation is proposed for this purpose. The statistical program has been used to prove which type of UPV is more suitable, the (SUPV) test or the (DUPV) test, to represent the relation between the ultrasonic pulse velocity and the concrete compressive strength. In this paper, the effect of salt content on the connection between the ultrasonic pulse velocity and the concrete compressive strength has also been studied.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


2021 ◽  
Vol 45 (5) ◽  
pp. 361-368
Author(s):  
Messaouda Belouadah ◽  
Zine Elabidine Rahmouni ◽  
Nadia Tebbal ◽  
Mokrani El Hassen Hicham

The present study aims primarily to investigate the possibility of assessing the physico-mechanical behavior of concrete incorporating marble waste or marble powder as a partial replacement for cement using destructive and non-destructive testing methods. Indeed, in this work, cement was partially replaced with marble powder at six different substitution levels, i.e. 5, 10, 15, 20, 25 and 30% by weight, with 1.5% adjuvant (super plasticizer) for each mixture. The samples prepared were then analyzed. In addition, the physico-mechanical properties, in the fresh and hardened states, water-to-cement ratio, absorption and compressive strengths of the concrete samples were examined as well. Moreover, the compressive strength of concrete was assessed through non-destructive testing methods such as the ultrasonic pulse velocity and rebound hammer. Likewise, the relationship between the ultrasound velocity and compressive strength of concrete were also estimated after 3, 7, 28 and 90 days of curing. The findings of the study indicated that, at early age of curing, the values of the compressive strength and ultrasonic pulse velocity were quite small for all replacement levels, of cement with marble powder, between 15 and 30%. Nevertheless, when the curing period was increased, the compressive strength and ultrasonic pulse velocity of all the samples went up as well. In the end, a linear relationship was observed between the ultrasonic pulse velocity and compressive strength for all substitution levels of cement with marble powder.


2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Tuba Bahtlı ◽  
Nesibe Sevde Özbay

In this study, the effects of finely-milled bronze and waste tire on the mechanical properties of concrete have been investigated. Approximately 2.5% and 5% by weight for each additive (bronze sawdust and waste tire) were added to dry concrete. The open porosity, density, compressive strength values of cured concrete have been determined. In addition, the Schmidt rebound hammer (SRH) and the ultrasonic pulse velocity (UPV) tests, which are non-destructive test methods, were applied. The microstructure and fracture surfaces of these materials were characterized by scanning electron microscopy (SEM). It was observed that the density of pure concrete was 2.35 g/cm3 while the density was 2.19 g/cm3 for a C+5%B+5%T material. Similarly, pure concrete had an almost three times better compressive strength and a two times better SRH value than those of the C+5%B+5%T material. The density and mechanical properties of concrete materials containing bronze and waste tire decreased due to micro crack formations, weak bonding and deep cracks forming especially between the concrete and additives.


2018 ◽  
Vol 24 (11) ◽  
pp. 53
Author(s):  
Ahmed Faleh Al-Bayati

The aim of this study is to propose reliable equations to estimate the in-situ concrete compressive strength from the non-destructive test. Three equations were proposed: the first equation considers the number of rebound hummer only, the second equation consider the ultrasonic pulse velocity only, and the third equation combines the number of rebound hummer and the ultrasonic pulse velocity. The proposed equations were derived from non-linear regression analysis and they were calibrated with the test results of 372 concrete specimens compiled from the literature. The performance of the proposed equations was tested by comparing their strength estimations with those of related existing equations from literature. Comparisons revealed that the proposed ultrasonic pulse velocity and combined equations achieved better agreements with the test results than the related existing equations, whereas the proposed and the existing rebound hummer equations were inconsistent.  


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7018
Author(s):  
Bogdan Bolborea ◽  
Cornelia Baera ◽  
Sorin Dan ◽  
Aurelian Gruin ◽  
Dumitru-Doru Burduhos-Nergis ◽  
...  

Developing non-destructive methods (NDT) that can deliver faster and more accurate results is an objective pursued by many researchers. The purpose of this paper is to present a new approach in predicting the concrete compressive strength through means of ultrasonic testing for non-destructive determination of the dynamic and static modulus of elasticity. For this study, the dynamic Poisson’s coefficient was assigned values provided by technical literature. Using ultra-sonic pulse velocity (UPV) the apparent density and the dynamic modulus of elasticity were determined. The viability of the theoretical approach proposed by Salman, used for the air-dry density determination (predicted density), was experimentally confirmed (measured density). The calculated accuracy of the Salman method ranged between 98 and 99% for all the four groups of specimens used in the study. Furthermore, the static modulus of elasticity was deducted through a linear relationship between the two moduli of elasticity. Finally, the concrete compressive strength was mathematically determined by using the previously mentioned parameters. The accuracy of the proposed method for concrete compressive strength assessment ranged between 92 and 94%. The precision was established with respect to the destructive testing of concrete cores. For this research, the experimental part was performed on concrete cores extracted from different elements of different structures and divided into four distinct groups. The high rate of accuracy in predicting the concrete compressive strength, provided by this study, exceeds 90% with respect to the reference, and makes this method suitable for further investigations related to both the optimization of the procedure and = the domain of applicability (in terms of structural aspects and concrete mix design, environmental conditions, etc.).


Sign in / Sign up

Export Citation Format

Share Document