scholarly journals Towards improving the seismic hazard map and the response spectrum for the state of RN/Brazil

Author(s):  
Petrus Gorgônio Bulhões da Nóbrega ◽  
Bruno Rammon Silva Souza ◽  
Selma Hissae Shimura da Nóbrega

Abstract Although Brazilian seismic activity is defined as low to moderate, it is known that intraplate earthquakes can also be associated to high intensities. In Brazil, the state of Rio Grande do Norte (RN) is one of the most seismically active areas, but there is no specific study to evaluate the seismic hazard in this region. This paper presents analyses towards improving the seismic hazard map, the peak ground acceleration value and the response spectrum of RN. The methodology is based on Probabilistic Seismic Hazard Analysis, comparing the results to the design criteria defined in the Brazilian code NBR 15421:2006 (Design of seismic resistant structures – Procedure). The analyses show that, in general, the code sets conservative values for the peak ground acceleration and for the design response spectrum; however, related to this last one, the shape is quite different.

Author(s):  
Girish Chandra Joshi ◽  
Mukat Lal Sharma

In the present study the authors evaluate uncertainties in the seismic hazard assessment for the Northern Indian region, based on the probabilistic seismic hazard analysis (PSHA). The newly compiled earthquake data has been treated for the quality, consistency, and homogeneity in a systematic manner to find out the uncertainties in every step of calculations. Based on the geological and tectonic setup, seismicity and other geophysical anomalies, a seismotectonic model of the region has been developed. The seismic hazard parameters are calculated based on giving proper weight to specific region. The peak ground acceleration (PGA) is estimated for various return periods for the Northern Indian region using a logic tree approach. The variation at the input level in terms of the source models and different Ground Motion Prediction Equations (GMPEs) is used. To examine into the effect of source modelling and GMPEs, the Coefficient of Variation (COV) maps have been generated. To encompass the region and for better resolution, the peak ground acceleration (PGA) is estimated at 15 minute intervals. The COV values due to all branch points in the logic tree decrease with distance from the source and conspicuous increase toward fault boundaries are observed.


2018 ◽  
Vol 195 ◽  
pp. 03019
Author(s):  
Rian Mahendra Taruna ◽  
Vrieslend Haris Banyunegoro ◽  
Gatut Daniarsyad

The Lombok region especially Mataram city, is situated in a very active seismic zone because of the existence of subduction zones and the Flores back arc thrust. Hence, the peak ground acceleration (PGA) at the surface is necessary for seismic design regulation referring to SNI 1726:2012. In this research we conduct a probabilistic seismic hazard analysis to estimate the PGA at the bedrock with a 2% probability of exceedance in 50 years corresponding to the return period of 2500 years. These results are then multiplied by the amplification factor referred from shear wave velocity at 30 m depth (Vs30) and the microtremor method. The result of the analysis may describe the seismic hazard in Mataram city which is important for building codes.


2009 ◽  
Vol 9 (3) ◽  
pp. 865-878 ◽  
Author(s):  
K. S. Vipin ◽  
P. Anbazhagan ◽  
T. G. Sitharam

Abstract. In this work an attempt has been made to evaluate the seismic hazard of South India (8.0° N–20° N; 72° E–88° E) based on the probabilistic seismic hazard analysis (PSHA). The earthquake data obtained from different sources were declustered to remove the dependent events. A total of 598 earthquakes of moment magnitude 4 and above were obtained from the study area after declustering, and were considered for further hazard analysis. The seismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones in the study area which are associated with earthquakes of magnitude 4 and above. For assessing the seismic hazard, the study area was divided into small grids of size 0.1°×0.1°, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources with in a radius of 300 km. Rock level peak horizontal acceleration (PHA) and spectral acceleration (SA) values at 1 s corresponding to 10% and 2% probability of exceedance in 50 years have been calculated for all the grid points. The contour maps showing the spatial variation of these values are presented here. Uniform hazard response spectrum (UHRS) at rock level for 5% damping and 10% and 2% probability of exceedance in 50 years were also developed for all the grid points. The peak ground acceleration (PGA) at surface level was calculated for the entire South India for four different site classes. These values can be used to find the PGA values at any site in South India based on site class at that location. Thus, this method can be viewed as a simplified method to evaluate the PGA values at any site in the study area.


Author(s):  
A. K. Ghosh ◽  
H. S. Kushwaha

The various uncertainties and randomness associated with the occurrence of earthquakes and the consequences of their effects on the NPP components and structures call for a probabilistic seismic risk assessment (PSRA). However, traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to be computed for PGA only. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for Kakrapar Atomic Power Station site. Sensitivity of the results to the changes in various parameters has also been presented. These results determine the seismic hazard at the given site and the associated uncertainties. The paper also presents some results of the seismic fragility for an existing containment structure. The various parameters that could affect the seismic structural response include material strength of concrete, structural damping available within the structure and the normalized ground motion response spectral shape. Based on this limited case study the seismic fragility of the structure is developed. The results are presented as families of conditional probability curves plotted against the peak ground acceleration (PGA). The procedure adopted incorporates the various randomness and uncertainty associated with the parameters under consideration.


Author(s):  
G. H. McVerry

Probabilistic techniques for seismic hazard analysis have
come into vogue in New Zealand for both the assessment of major projects and the development and review of seismic design codes. However, there are considerable uncertainties in the modelling
 of the strong-motion attenuation, which is necessarily based largely on overseas data. An excellent agreement is obtained between an average 5% damped response spectrum for New Zealand alluvial sites in the 20 to 59 km distance range and 5.4 to 6.0 magnitude class and that given by a Japanese model. Unfortunately, this corresponds to only about half the amplitude levels of 150 year spectra relevant to code design. The much more rapid decay
of ground shaking with distance in New Zealand has led to a considerable modification based on maximum ground acceleration
data from the Inangahua earthquake of the distance-dependence
of the Japanese response spectra model. Less scatter in New Zealand data has resulted in adopting a lower standard deviation for the attenuation model, which is important in reducing the considerable "probabilistic enhancement" of the hazard estimates. Regional differences in attenuation shown by intensities are difficult to resolve from the strong-motion acceleration data, apart from lower accelerations in Fiordland.


2020 ◽  
Vol 30 (2) ◽  
pp. 215
Author(s):  
Anggun Mayang Sari ◽  
Afnindar Fakhrurrozi

The geological and seismic-tectonic setting in the Bandung Basin area proliferates the seismicity risk. Thus, it is necessary to investigate the seismic hazards caused by the foremost seismic source that affects the ground motions in the bedrock. This research employed Probability Seismic Hazard Analysis (PSHA) method to determine the peak ground acceleration value. It considers the source of the earthquakes in the radius of 500 km with a return period of 2500 years. The analysis results showed that the Peak Ground Acceleration (PGA) in this region varies from 0.46 g to 0.70 g. It correlates with the magnitude and hypocentre of the dominant earthquake source of the study locations. The PGA value on the bedrock was used as an input to develop the seismic hazard microzonation map. It was composed using the Geographic Information System (GIS) to visualise the result. This research provides a scientific foundation for constructing residential buildings and infrastructure, particularly as earthquake loads in the building structure design calculations. ABSTRACT - Mikrozonasi Bahaya Seismik Berdasarkan Probability Seismic Hazard Analysis di Cekungan Bandung. Kondisi geologi dan seismik-tektonik di Cekungan Bandung meningkatkan risiko kegempaan di wilayah tersebut. Oleh karena itu, perlu dilakukan penelitian tentang bahaya seismik yang disebabkan oleh sumber-sumber gempa di sekitarnya yang mempengaruhi gelombang gempa di batuan dasar. Penelitian ini menggunakan metode Probability Seismic Hazard Analysis (PSHA) untuk menentukan nilai percepatan gelombang gempa di batuan dasar. Lebih lanjut penelitian ini menggunakan sumber gempa dalam radius 500 km dengan periode perulangan 2500 tahun. Hasil analisis menunjukkan bahwa Peak Ground Acceleration (PGA) di wilayah ini bervariasi dari 0,46 g hingga 0,70 g. Hal ini berkorelasi dengan magnitudo dan jarak hiposenter sumber gempa dominan terhadap lokasi penelitian. Nilai PGA di batuan dasar digunakan sebagai input data dalam pembuatan peta mikrozonasi bahaya seismik. Peta mikrozonasi bahaya seismik disusun dan divisualisasikan menggunakan Sistem Informasi Geografis (SIG). Luaran penelitian ini menghasilkan landasan ilmiah pada konstruksi bangunan tempat tinggal dan infrastruktur, khususnya sebagai pembebanan gempa dalam perhitungan desain struktur bangunan.


2020 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Rohima Wahyu Ningrum ◽  
Wiwit Suryanto ◽  
Hendra Fauzi ◽  
Estuning Tyas Wulan Mei

The earthquake that occurred in the West Halmahera region was very detrimental, even though the human casualties were not very significant. But it will affect the stability and capacity of a region in terms of regional development. The mapping of earthquake-prone areas is carried out by a probabilistic seismic hazard analysis (PSHA) method to analyze soil movement parameters, namely Peak Ground Acceleration so that it can determine earthquake-prone areas in West Halmahera. The results of seismic hazard analysis show that the West Halmahera area is an area that is relatively prone to earthquake hazards because it is still strongly influenced by subduction (megathrust) earthquakes from the Philippine plate, Maluku sea and Sangihe. This is indicated by the value of earthquake acceleration on the Peak Ground Acceleration for the 500 year return period of around 0.38 - 3.69 g and 0.30 - 3.69 g for the 2500 year return period.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
D. Giardini ◽  
G. Grünthal ◽  
K. M. Shedlock ◽  
P. Zhang

The Global Seismic Hazard Assessment Program (GSHAP), a demonstration project of the UN/International Decade of Natural Disaster Reduction, was conducted in the 1992-1998 period with the goal of improving global standards in seismic hazard assessment. The GSHAP Global Seismic Hazard Map has been compiled by joining the regional maps produced for different GSHAP regions and test areas; it depicts the global seismic hazard as Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years, corresponding to a return period of 475 years.


2018 ◽  
Vol 3 (1) ◽  
pp. 49-53
Author(s):  
Awanda Magdalena Bessi ◽  
Hery L. Sianturi ◽  
Bernandus Bernandus

ABSTRAK Penelitian menggunakan metode HVSR (Horizontal to Vertical Spectral Ratio) telah dilakukan untuk memetakan daerah yang rawan terhadap gempa bumi di Desa Bitobe. Tujuan dari penelitian ini adalah mengetahui nilai periode dominan tanah dan percepatan tanah maksimum, serta untuk membuat peta PGA dan juga peta Mikrozonasi. Pengambilan data dilakukan pada 45 titik dengan jarak antar titik ± 250 m dari titik satu ke titik lainnya dengan waktu perekaman selama ± 20 menit menggunakan TDS tipe 303S. Data yang diperoleh diolah menggunakan software Datapro, Geopsy, Surfer 13, dan Google Earth. Hasil pengolahan data diperoleh nilai frekuensi dominan (). Parameter ini digunakan untuk meghitung nilai PGA menggunakan persamaan empiris Kanai dengan data katalog gempa bumi dari tahun 1966-2016. Metode Mc.Guirre dan Esteva hanya menggunakan data katalog gempa saja dalam menghitung PGA. Berdasarkan hasil penelitian, didapatkan bahwa nilai frekuensi dominan berkisar antara 0,273 Hz – 17,887 Hz. Nilai percepatan tanah maksimum berdasarkan persamaan empiris Kanai berkisar antara 32,319 gal – 261,178 gal, Mc.Guirre berkisar antara 128,215 gal – 134,862 gal dan Esteva berkisar antara 147,359 gal – 156,007 gal. Hasil dari ketiga persamaan ini memiliki perbedaan dengan peta hazard gempa Indonesia. Kata kunci: HVSR, Mikrozonasi, Kanai, Mc.Guirre, Esteva, Bitobe ABSTRACT The research using HVSR (Horizontal to Vertical Spectral Ratio) has been carried out to map the disturb areas to earthquakes in Bitobe village. The aims of this research are to determine the values of soil dominant frequency and the peak ground acceleration than make PGA map and also microzonation map. Data were collected at 45 points with the distance between points ± 250 meters from one point to the other with ± 20 minutes of recording time used TDS 303S type. The data were processed using software Datapro, Geopsy, Surfer 13, and Google Earth. The result of data processing was dominant frequency value (). This parameter was used to calculate the peak ground acceleration with Kanai empirical equations. The earthquakes catalog data were used from 1966-2016. Mc.Guirre and Esteva method only used the earthquakes catalog data to calculated the PGA. According to this research, it was obtained that the values of the dominant frequency was about 0,273 Hz – 17,887 Hz. The values of peak ground acceleration based on Kanai empirical equations about 32,319 gal – 261,178 gal, Mc.Guirre about 128,215 gal – 134,862 gal and Esteva about 147,359 gal – 156,007 gal. The result of this third equations have different with the earthquakes hazard map of Indonesia. Key Words: HVSR, Microzonation, Kanai, Mc.Guirre, Esteva, Bitobe


Sign in / Sign up

Export Citation Format

Share Document