scholarly journals Influence of hydraulic jigging of construction and demolition waste recycled aggregate on hardened concrete properties

Author(s):  
Iago Lopes dos Santos ◽  
Luciana Vanni Frantz ◽  
Angela Borges Masuero

abstract: Concern with the maintenance of natural resources has increased research about recycled aggregates for concrete production. However, the heterogeneity of recycled aggregates is one of the main constraints for their use in practice, because it can generate variability in concrete properties, hence reducing their final quality. Then, the jigging has been seen as a promising way of improving recycled aggregate quality. This paper aimed to evaluate its use for better application in concrete. A modified jig was used to sort recycled coarse aggregates. Concrete were produced with water/cement ratio from 0.5 and 100% of recycled coarse aggregate. The recycled aggregate properties upgrade were achieved and the results of compressive strength and modulus of elasticity of recycled concrete made with aggregate which were submitted to jigging were increased, indicating a potential application in wide scale.

2016 ◽  
Vol 881 ◽  
pp. 346-350 ◽  
Author(s):  
Luzana Leite Brasileiro ◽  
Fátima Maria de Souza Pereira ◽  
Pablo de Abreu Vieira ◽  
José Milton Elias de Matos

Every year, there is a considerable increase in the exploitation of deposits to supply the market for aggregates. On the other hand, so does the production of solid waste from construction and demolition waste (CDW). In 2010 Brazil approved the PNRS (National Policy on Solid Waste), which sets out how the country should have their waste, encouraging recycling and sustainability. As an alternative to the above problem, this paper aims to investigate the feasibility of partial and total replacement of the asphalt concrete aggregates by recycled aggregates from CDW in order to reduce the environmental impacts caused by the operation of quarries and give an adequate final destination the residue produced by man in construction. Were carried out five (05) projects mixture of: the first (parameter of our research) used only natural aggregates (0% CDW) in the second, third and fourth replaced 25%, 50% and 75% respectively of natural aggregate by the recycled aggregate and the fifth and last, used only recycled aggregates (100% CDW). They carried out the characterization of the aggregates by means of physico-chemical and mechanical, analyzing them with reference based on specific standards paving. For mixtures, they calculated the volumetric parameters and performed mechanical tests of tensile strength and stability. The results indicate that the recycled aggregate, in a defined proportion, can replace the natural aggregate in the flexible pavements


Author(s):  
Sharifah Salwa Mohd Zuki ◽  
◽  
Shahiron Shahidan ◽  
Shivaraj Subramaniam ◽  
◽  
...  

This paper discussed the recycled aggregates produced from construction and demolition waste and their utilization in concrete construction. Along with a brief overview of the engineering properties of recycled aggregates, the paper also summarizes the effect and use of recycled aggregates on the properties of fresh and hardened concrete. The recycled aggregates were treated with epoxy resin to reduce the water absorptions with different percentages of resin such as 0%, 25%, 50%, 75%, and 100%. Epoxy resin is widely used in recent years owing to the enhancing of mechanical and durability of the concrete. This research also showed, recycled aggregate concrete are close proximity to normal concrete in terms of split tensile strength, compression strength and wet density. The low usage of resin was obtained good strength concrete compared to high percentage contained treated aggregates due to low bonding between material.


2018 ◽  
Vol 68 (330) ◽  
pp. 151 ◽  
Author(s):  
B. González-Fonteboa ◽  
S. Seara-Paz ◽  
J. De Brito ◽  
I. González-Taboada ◽  
F. Martínez-Abella ◽  
...  

The construction field has contributed to environmental degradation, producing a high amount of construction and demolition waste (C&D waste) and consuming large volumes of natural resources. In this context, recycled concrete (RC) has been recognised as a means to preserve natural resources and reduce space for waste storage. During the last decades, many researchers have developed works studying different recycled concrete properties. This review focuses on structural RC made with coarse recycled aggregate from concrete waste. The main objective is to provide a state of the art report on RC’s properties and an analysis on how to predict them taking into account relevant research works. Moreover, the study tries to collect and update RC findings, proposing equations to define RC’s performance, in terms of mechanical strength, modulus of elasticity, stress-strain, creep and shrinkage.


2015 ◽  
Vol 732 ◽  
pp. 411-414 ◽  
Author(s):  
Tereza Pavlů ◽  
Magdaléna Šefflová

Recycled construction and demolition waste, especially recycled concrete, is able to use as an aggregate for concrete. The high water absorption capacity (WA) of recycled aggregate has a negative impact of concrete mix workability and influences the water-cement ratio. This paper presents results of experimental measurement of WA of recycled aggregate and recycled concrete. Series of concrete samples with various replacement ratios of natural aggregate and recycled aggregate were prepared for this study. The main aim of this study is to analyze the influence of recycled aggregate WA, and mixture ratios on the WA of hardened concrete (HC). Regression model to estimate the WA of hardened concrete is presented.


2021 ◽  
Vol 6 (11) ◽  
pp. 155
Author(s):  
Natividad Garcia-Troncoso ◽  
Bowen Xu ◽  
Wilhenn Probst-Pesantez

Recycling of construction and demolition waste is a central point of discussion throughout the world. The application of recycled concrete as partial replacement of mineral aggregates in concrete mixes is one of the alternatives in the reduction of pollution and savings in carbon emissions. The combined influence of the recycled crushed concrete, lime, and natural pozzolana on the mechanical and sustainable properties of concrete materials is firstly proposed in this study. In this research, unconventional construction materials are employed to produce concrete: the recycled crushed concrete is used as coarse aggregate, while lime and natural pozzolana are used as a partial replacement for cement. Substitutions of 10%, 20%, 50% of gravel are made with recycled aggregates, and 2%, 5%, 10% of cement with lime and natural pozzolan. Tests on the fresh and hardened properties, destructive (compressive strength) and non-destructive tests (sclerometer rebound and ultrasound) of mixtures are carried out. It is shown that the use of recycled materials can provide an increase in compressive strength of up to 34% with respect to conventional concrete. Life cycle cost and sustainability assessments indicate that concrete materials incorporating recycled aggregate possess good economic and environmental impacts.


2016 ◽  
Vol 847 ◽  
pp. 156-165
Author(s):  
Marco Pepe ◽  
Eduardus Koenders ◽  
Romildo Dias Toledo Filho ◽  
Enzo Martinelli

The construction sector is more and more committed to reduce its environmental impacts. One of the key actions undertaken in the last decade deals with the ability of turning construction and demolition waste into new raw materials. For instance, the use of recycled aggregates for producing new concrete was one of the most investigated. Thus, in the last decade, plenty of researches were involved in project on characterising the mechanical behaviour of concrete made with recycled aggregates. However, these projects were mainly experimental in nature and generally led to merely empirical formulations. Conversely, this paper is intended at providing a contribution for predicting the mechanical properties of Recycled Aggregates Concrete (RAC). Particularly, it aims at quantifying the effect of replacing ordinary aggregates with Recycled Concrete Aggregates (RCA) on the resulting compressive strength of RAC. To this end, a conceptual model considering both the relevant physical properties of regular and recycled aggregates, including the attached mortar content, and the hydration reactions of Portland cement paste is proposed. The actual predictive capacity of the proposed model is assessed through an experimental validation against experimental tests carried out on several concrete batches produced with various values for the different keys parameters, such as the nominal water-to-cement ratio, the aggregates replacement ratio and the initial moisture condition of aggregates. Both the experimental data and the theoretical formulations proposed in this paper stem out from the inter-university collaboration developed as part of the EU funded EnCoRe Project (www.encore-fp7.unisa.it).


2013 ◽  
Vol 742 ◽  
pp. 379-383 ◽  
Author(s):  
Julia García González ◽  
Desirée Rodríguez Robles ◽  
Andrés Juan Valdés ◽  
Julia M. Morán del Pozo ◽  
M. Ignacio Guerra Romero

The use of recycled aggregate to produce new concretes has become increasingly widespread, and numerous studies have demonstrated that the final product performs similarly to traditional concrete. However, construction and demolition waste (CDW) presents certain characteristics which could limit its acceptance in the construction sector due to worse performance than natural aggregates. One example of this is water absorption, which in recycled aggregates reaches such high values that the amount of free water calculated for mixing the concrete is affected, consequently impacting on the concrete's properties, especially consistency. This paper reports the possibility of solving this problem with a simple and inexpensive method; pre-saturation of recycled aggregates prior to adding them to the mix. The results of two different pre-treatments are compared; one consisted of immersing the aggregates in water for 10 minutes and the other, in addition to the above procedure, included a brief period of air drying and subsequent elimination of surface water from the aggregate. Both pre-treatments were found to solve the problem of consistency.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5675
Author(s):  
Caroline S. Rangel ◽  
Mayara Amario ◽  
Marco Pepe ◽  
Enzo Martinelli ◽  
Romildo D. Toledo Filho

Recently, concerns have been rising about the impact of increasing the depletion of natural resources and the relevant generation of construction and demolition waste, on the environment and economy. Therefore, several efforts have been made to promote sustainable efficiency in the construction industry and the use of recycled aggregates derived from concrete debris for new concrete mixtures (leading to so-called recycled aggregate concrete, RAC) is one of the most promising solutions. Unfortunately, there are still gaps in knowledge regarding the durability performances of RAC. In this study, we investigate durability of structural RAC subjected to wet-dry cycles. We analyze the results of an experimental campaign aimed at evaluating the degradation process induced by wetting and drying cycles on the key physical and mechanical properties of normal- and high-strength concrete, produced with coarse recycled concrete aggregates (RCAs) of different sizes and origins. On the basis of the results we propose a degradation law for wetting and drying cycles, which explicitly makes a possible correlation between the initial concrete porosity, directly related to the specific properties of the RCAs and the resulting level of damage obtained in RAC samples.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1976 ◽  
Author(s):  
Samuel Roque ◽  
Cinthia Maia Pederneiras ◽  
Catarina Brazão Farinha ◽  
Jorge de Brito ◽  
Rosário Veiga

This paper presents a study of incorporation of two types of construction and demolition waste (CDW) in rendering mortars, as aggregates at 0%, 20%, 50% and 100% (by volume). Recycled concrete aggregate (RCA) and mixed recycled aggregate (MRA) were used. The former is mainly composed of cementitious waste and the latter consists of a mixture of non-segregated wastes. The performance of the cement mortars with recycled aggregates was evaluated through an extensive experimental programme. The analysis comprised workability, mechanical strength, water absorption, shrinkage, open porosity and the evaluation of durability by permeability to water under pressure after an artificial accelerated ageing test. The results are considered positive, although as the incorporation of recycled aggregates (both MRA and RCA) increased the mechanical strength, the modulus of elasticity and bulk density decreased, which leads to the production of lighter mortars that are less susceptible to cracking. The modified mortar with 20% of MRA presented the best performance, in terms of mechanical behaviour.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Woubishet Zewdu Taffese

In developing countries, construction and demolition waste (CDW) is disposed to landfill, causing social, environmental, and economic crises. In these nations, CDW exponentially increase due to their rapid economic growth, industrialization, and urbanization. This paper aims to examine the possibility of recycling concrete waste for production of new concrete in Ethiopia. Physical and mechanical characteristics of recycled concrete aggregate (RCA) acquired from concrete waste are thoroughly examined. Though the RCA exhibited relatively lesser performance compared with the natural coarse aggregate (NCA), it reveals the same properties as of normal-weight aggregates in several instances. The performance of concrete specimens which employ RCA up to 20% is evaluated from workability, strength, and permeability aspects. The utilization of RCA slightly affects the workability and the water permeability properties of the concretes. Replacement of 10% of the NCA by the RCA enhances the compressive strength of the hardened concrete by 8%. The difference between the splitting tensile strength of the concretes which employ RCA and conventional aggregates is trivial. Generally, this work demonstrates the practicability of concrete waste recycling to produce new concrete or construction materials in Ethiopian context.


Sign in / Sign up

Export Citation Format

Share Document