Influence of Moisture States of Recycled Coarse Aggregates on the Slump Test

2013 ◽  
Vol 742 ◽  
pp. 379-383 ◽  
Author(s):  
Julia García González ◽  
Desirée Rodríguez Robles ◽  
Andrés Juan Valdés ◽  
Julia M. Morán del Pozo ◽  
M. Ignacio Guerra Romero

The use of recycled aggregate to produce new concretes has become increasingly widespread, and numerous studies have demonstrated that the final product performs similarly to traditional concrete. However, construction and demolition waste (CDW) presents certain characteristics which could limit its acceptance in the construction sector due to worse performance than natural aggregates. One example of this is water absorption, which in recycled aggregates reaches such high values that the amount of free water calculated for mixing the concrete is affected, consequently impacting on the concrete's properties, especially consistency. This paper reports the possibility of solving this problem with a simple and inexpensive method; pre-saturation of recycled aggregates prior to adding them to the mix. The results of two different pre-treatments are compared; one consisted of immersing the aggregates in water for 10 minutes and the other, in addition to the above procedure, included a brief period of air drying and subsequent elimination of surface water from the aggregate. Both pre-treatments were found to solve the problem of consistency.

2021 ◽  
Author(s):  
Manuel Contreras Llanes ◽  
Maximina Romero Pérez ◽  
Manuel Jesús Gázquez González ◽  
Juan Pedro Bolívar Raya

Abstract Recycled aggregates (RA) from construction and demolition waste (CDW) instead of natural aggregates (NA) was analysed in the manufacture of new eco-friendly concrete. Fine (FRA) and coarse (CRA) recycled aggregates were used in different percentages as substitutes of natural sand and gravel, respectively. The results revealed that the use of RA in percentages of up to 50 wt.% are feasible. Additionally, RA were used to produce paving blocks in accordance with industrial requirements. Thus, values of water absorption lesser than 6% and tensile strength upper than 3.6 MPa were obtained, which are similar to those of a reference sample. These results were achieved by reducing the incorporation of cement, thereby saving production costs and minimizing environmental impact.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5748
Author(s):  
João Pacheco ◽  
Jorge de Brito

This paper concerns the recovery of construction and demolition waste as coarse recycled aggregates for concrete. Coarse recycled aggregates may be used as a partial or total replacement of natural aggregates, contributing to the circular economy and minimizing landfill disposals as well as the consumption of natural mineral resources. However, construction and demolition waste is a heterogeneous material with undefined quality and the processing of this waste into recycled aggregates needs to ensure that the recycled aggregates have suitable properties for concrete. This paper summarizes several aspects related to coarse recycled aggregates, specifically addressing: (i) the typical composition of construction and demolition waste; (ii) the influence of different types of constituents on the properties of recycled aggregates and recycled aggregate concrete; (iii) requirements for recycled aggregates to be used in concrete; and (iv) production methods of recycled aggregates. It is argued that coarse recycled aggregates are a suitable construction material with adequate quality, even when common equipment is used in their production and preliminary separation as a key operation for ensuring the quality of the aggregates is recommended.


2021 ◽  
Vol 13 (6) ◽  
pp. 3044
Author(s):  
Ana María Bravo-German ◽  
Iván Daniel Bravo-Gómez ◽  
Jaime A. Mesa ◽  
Aníbal Maury-Ramírez

Nowadays, construction, maintenance, reparation, rehabilitation, retrofitting, and demolition from infrastructure and buildings generate large amounts of urban waste, which usually are inadequately disposed due to high costs and technical limitations. On the other hand, the increasing demand for natural aggregates for concrete production seriously affects mountains and rivers as they are the source of these nonrenewable goods. Consequently, the recycling of aggregates for concrete is gaining attention worldwide as an alternative to reduce the environmental impacts caused by the extraction of nonrenewable goods and disposal of construction and demolition waste (C&DW). Therefore, this article describes the effect on the mechanical properties of new concrete using recycled aggregates obtained from old paving stones. Results show that replacing 50% by weight of the fine and coarse aggregate fractions in concrete with recycled aggregate does not meaningfully affect its mechanical behavior, making the use of recycled aggregates in new precast paving stones possible. Therefore, the latter can reduce environmental impacts and costs for developing infrastructure and building projects.


Author(s):  
Juliane Patricia Oliveira ◽  
Carlos Henrique Dos Santos ◽  
Maria Lúcia Okumura ◽  
Natália Ueda Yamaguchi

The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. The results showed that the higher the percentage of substitution, the greater the water absorption and the lower the resistance results concrete compression. This result was obtained due to the lighter characteristic of the recycled aggregate compared to the natural aggregate. It was concluded that the concrete produced with recycled aggregates could be used in nonstructural functions, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources and contributing for the sustainable development.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5452
Author(s):  
Adriana B. Dias ◽  
João N. Pacheco ◽  
José D. Silvestre ◽  
Isabel M. Martins ◽  
Jorge de Brito

The incorporation of recycled aggregates in concrete not only reduces the extraction of natural resources, but also decreases landfill disposal of construction and demolition waste. Hence, environmental impacts and costs are reduced, promoting the use of recycled aggregates and circular economy. However, the impacts of transport depend on the distance between facilities and longer distances may result in recycled aggregates being more costly and having larger environmental impact than natural aggregates. This paper discusses this topic, presents a review on the use of life cycle assessment methodology on natural and recycled aggregates for concrete, and applies this methodology in a real context pertaining the procurement of coarse aggregates to ready-mix concrete plants. A case study of two Portuguese regions, Coimbra and Lisbon, is presented. For each region, a quarry, a construction and demolition waste plant, and a ready-mix concrete plant are chosen and a comparative life cycle assessment is made. Different scenarios for the supply of natural and recycled aggregates are studied and the scenarios for recycled aggregates procurement include different hypotheses for the installation (construction and demolition waste plant or quarry) processing the construction and demolition waste into recycled aggregates. For this case study and both regions, it was found that the supply of recycled aggregates produced at the construction and demolition waste plant has lower environmental impact and cost than all other scenarios, including the provision of natural aggregates, except when it is assumed that the quarry is licensed and equipped for receiving unsorted construction and demolition waste and processing it into recycled aggregates. The paper shows that transport distance is a determining factor in the comparison of the impacts of the procurement of natural and recycled aggregates. Moreover, in the Portuguese context, the environmental impacts of the procurement of recycled aggregates may be smaller than those of natural aggregates, but cost may be larger for recycled aggregates, preventing that the most sustainable option is chosen.


2016 ◽  
Vol 35 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Ronaldo A Medeiros-Junior ◽  
Carlos ET Balestra ◽  
Maryangela G Lima

The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.


Author(s):  
Iago Lopes dos Santos ◽  
Luciana Vanni Frantz ◽  
Angela Borges Masuero

abstract: Concern with the maintenance of natural resources has increased research about recycled aggregates for concrete production. However, the heterogeneity of recycled aggregates is one of the main constraints for their use in practice, because it can generate variability in concrete properties, hence reducing their final quality. Then, the jigging has been seen as a promising way of improving recycled aggregate quality. This paper aimed to evaluate its use for better application in concrete. A modified jig was used to sort recycled coarse aggregates. Concrete were produced with water/cement ratio from 0.5 and 100% of recycled coarse aggregate. The recycled aggregate properties upgrade were achieved and the results of compressive strength and modulus of elasticity of recycled concrete made with aggregate which were submitted to jigging were increased, indicating a potential application in wide scale.


Author(s):  
Manuel Contreras Llanes ◽  
Maximina Romero Pérez ◽  
Manuel Jesús Gázquez González ◽  
Juan Pedro Bolívar Raya

AbstractRecycled aggregates (RA) from construction and demolition waste (CDW) instead of natural aggregates (NA) were analysed in the manufacture of new eco-friendly concrete. Fine (FRA) and coarse (CRA) recycled aggregates were used in different percentages as substitutes of natural sand and gravel, respectively. The results revealed that the use of RA in percentages of up to 50 wt.% is feasible. Additionally, RA were used to produce paving blocks in accordance with industrial requirements. Thus, values of water absorption lesser than 6.0% and tensile strength upper than 3.6 MPa were obtained, which are similar to those of a reference sample and within the limit values established by the regulations. These results were achieved by reducing the incorporation of cement, thereby saving production costs and minimizing environmental impact.


2016 ◽  
Vol 881 ◽  
pp. 346-350 ◽  
Author(s):  
Luzana Leite Brasileiro ◽  
Fátima Maria de Souza Pereira ◽  
Pablo de Abreu Vieira ◽  
José Milton Elias de Matos

Every year, there is a considerable increase in the exploitation of deposits to supply the market for aggregates. On the other hand, so does the production of solid waste from construction and demolition waste (CDW). In 2010 Brazil approved the PNRS (National Policy on Solid Waste), which sets out how the country should have their waste, encouraging recycling and sustainability. As an alternative to the above problem, this paper aims to investigate the feasibility of partial and total replacement of the asphalt concrete aggregates by recycled aggregates from CDW in order to reduce the environmental impacts caused by the operation of quarries and give an adequate final destination the residue produced by man in construction. Were carried out five (05) projects mixture of: the first (parameter of our research) used only natural aggregates (0% CDW) in the second, third and fourth replaced 25%, 50% and 75% respectively of natural aggregate by the recycled aggregate and the fifth and last, used only recycled aggregates (100% CDW). They carried out the characterization of the aggregates by means of physico-chemical and mechanical, analyzing them with reference based on specific standards paving. For mixtures, they calculated the volumetric parameters and performed mechanical tests of tensile strength and stability. The results indicate that the recycled aggregate, in a defined proportion, can replace the natural aggregate in the flexible pavements


Author(s):  
Sharifah Salwa Mohd Zuki ◽  
◽  
Shahiron Shahidan ◽  
Shivaraj Subramaniam ◽  
◽  
...  

This paper discussed the recycled aggregates produced from construction and demolition waste and their utilization in concrete construction. Along with a brief overview of the engineering properties of recycled aggregates, the paper also summarizes the effect and use of recycled aggregates on the properties of fresh and hardened concrete. The recycled aggregates were treated with epoxy resin to reduce the water absorptions with different percentages of resin such as 0%, 25%, 50%, 75%, and 100%. Epoxy resin is widely used in recent years owing to the enhancing of mechanical and durability of the concrete. This research also showed, recycled aggregate concrete are close proximity to normal concrete in terms of split tensile strength, compression strength and wet density. The low usage of resin was obtained good strength concrete compared to high percentage contained treated aggregates due to low bonding between material.


Sign in / Sign up

Export Citation Format

Share Document