scholarly journals Concrete-Based and Mixed Waste Aggregates in Rendering Mortars

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1976 ◽  
Author(s):  
Samuel Roque ◽  
Cinthia Maia Pederneiras ◽  
Catarina Brazão Farinha ◽  
Jorge de Brito ◽  
Rosário Veiga

This paper presents a study of incorporation of two types of construction and demolition waste (CDW) in rendering mortars, as aggregates at 0%, 20%, 50% and 100% (by volume). Recycled concrete aggregate (RCA) and mixed recycled aggregate (MRA) were used. The former is mainly composed of cementitious waste and the latter consists of a mixture of non-segregated wastes. The performance of the cement mortars with recycled aggregates was evaluated through an extensive experimental programme. The analysis comprised workability, mechanical strength, water absorption, shrinkage, open porosity and the evaluation of durability by permeability to water under pressure after an artificial accelerated ageing test. The results are considered positive, although as the incorporation of recycled aggregates (both MRA and RCA) increased the mechanical strength, the modulus of elasticity and bulk density decreased, which leads to the production of lighter mortars that are less susceptible to cracking. The modified mortar with 20% of MRA presented the best performance, in terms of mechanical behaviour.

2021 ◽  
Vol 11 (17) ◽  
pp. 7791
Author(s):  
Alberto Morón ◽  
Daniel Ferrández ◽  
Pablo Saiz ◽  
Carlos Morón

The reuse of construction and demolition waste is a necessary way to achieve greater sustainability in building, introducing the criteria of the so-called circular economy in the design of the production process of new construction materials. This research focuses on analyzing the properties of mortars made with recycled aggregates from concrete waste and reinforced with aramid fibers. For this purpose, an experimental campaign was carried out, including chemical, physical, mechanical and durability tests, performing a statistical analysis to discuss the different properties analyzed. The results show how the incorporation of aramid fibers in the matrix of cement mortars made with recycled concrete aggregate improves their technical performance and mechanical resistance, thus increasing their application possibilities and achieving similar results in some properties to those obtained with traditional mortars made with natural aggregate.


2019 ◽  
Vol 12 (1) ◽  
pp. 250 ◽  
Author(s):  
Debora Acosta Álvarez ◽  
Anadelys Alonso Aenlle ◽  
Antonio José Tenza-Abril ◽  
Salvador Ivorra

The main objective of this work is to evaluate the properties of hot asphalt mixtures that have been manufactured with different recycled concrete aggregate (RCA) percentages (0%, 20%, 40%, 60% and 80% of the fraction 5–13 mm) and asphalt (4%, 4.5% and 5%). Dense asphalt mixtures were made; partially replacing the natural aggregate (NA) fraction between 5 and 13 mm. Marshall specimens were manufactured to determine the main properties of the asphalt concrete (AC) in terms of density, voids, stability and deformation. Additionally, the optimal asphalt content (OAC) was determined, and measured the water sensibility, the stiffness modulus and the permanent deformation. The results corroborate the potential for using these sources of construction and demolition waste (CDW) as a RCA in asphalt concrete and show that the hot asphalt mixtures with up to 40% substitution of natural aggregate by recycled aggregate in the fraction 5–13 mm present good behavior.


2019 ◽  
Vol 22 ◽  
pp. 67-71
Author(s):  
Karel Mikulica ◽  
Iveta Hájková

In the future, it is planned to use up to 50% of construction and demolition waste (C&DW) for the production of new building structures. This leads us to think about how we can use recycled concrete aggregate (RCA) as a substitute for natural aggregate (NA) in concrete mixtures. This is why we compare the two typical representatives of recycled aggregates with a representative of natural aggregates. As a representative of recycled aggregates, we chose pure concrete recycled from the cutting of concrete and mixed recyclate from the demolition of the apartment building. As a representative of natural stone, we chose the extracted aggregate.


2021 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Sara Jesus ◽  
Cinthia Maia Pederneiras ◽  
Catarina Brazão Farinha ◽  
Jorge de Brito ◽  
Rosário Veiga

The construction sector is responsible for one third of the total wastes produced in the EU. Finding solutions for the reuse or recycling of these wastes is one of the major environmental concerns of modern times. The replacement of sand or cement in specific construction materials, such as concrete or mortars, is a possible solution for these wastes’ management. By using construction and demolition wastes in construction materials, namely on buildings, the cycle of circular economy is closed, increasing the life cycle of the wastes in the same sector. In this research, a reduction of cement content in rendering mortars is analysed. This reduction is achieved by a decrease of the cement/aggregate ratio simultaneously with the incorporation of very fine recycled aggregate from construction and demolition waste. Two recycled aggregates were studied: recycled concrete aggregate (RCA) and mixed recycled aggregate (MRA). The fresh and hardened state properties of the mortars were analysed. Several tests were carried out to evaluate the mortars’ performance, such as mechanical strength tests, water absorption tests, drying tests and shrinkage. It was noticed that the incorporation of RCA led to a better behaviour than in the reference mortar, in terms of mechanical strengths and protection against water.


2020 ◽  
Author(s):  
Michael Galetakis ◽  
Athanasia Soultana ◽  
Theodoros Daskalakis

<p>Waste concrete is the most predominant constituent material among construction and demolition waste. Recycling of this material could minimize landfilled waste and mineral resources depletion. This study investigates, in laboratory scale, the production of upgraded recycled concrete aggregates, suitable for the replacement of primary (crushed limestone sand) used in cement mortars, by means of selective crushing and autogenous grinding. These particle size reduction techniques, compared to traditional crushing/grinding, have the potential to remove the brittle cement paste from the aggregates, thus significantly improving their quality. The granulometry, the density, the water absorption (EN 13755) and the flow coefficient (EN 933-6) of the produced upgraded sand was determined and compared to crushed limestone sand. Subsequently, cement mortar specimens were manufactured using upgraded aggregates for total replacement of crushed limestone sand. Specimens were tested for their compressive and flexural strength (EN 196-1), density and water absorption. Results indicated that the upgraded recycled sand produced through the selective crushing and autogenous grinding processes had improved properties compared to the one produced by conventional crushing processes (flexural and compressive strength of cement mortar specimens were increased by 29% and 7%, respectively). However, the quality of the upgraded sand is lower than that of the primary crushed limestone. To further explore the issue, it is planned to investigate in more detail the process of autogenous grinding and to investigate the use of other selective aggregate-cement paste liberation technologies.</p>


2021 ◽  
Vol 6 (11) ◽  
pp. 155
Author(s):  
Natividad Garcia-Troncoso ◽  
Bowen Xu ◽  
Wilhenn Probst-Pesantez

Recycling of construction and demolition waste is a central point of discussion throughout the world. The application of recycled concrete as partial replacement of mineral aggregates in concrete mixes is one of the alternatives in the reduction of pollution and savings in carbon emissions. The combined influence of the recycled crushed concrete, lime, and natural pozzolana on the mechanical and sustainable properties of concrete materials is firstly proposed in this study. In this research, unconventional construction materials are employed to produce concrete: the recycled crushed concrete is used as coarse aggregate, while lime and natural pozzolana are used as a partial replacement for cement. Substitutions of 10%, 20%, 50% of gravel are made with recycled aggregates, and 2%, 5%, 10% of cement with lime and natural pozzolan. Tests on the fresh and hardened properties, destructive (compressive strength) and non-destructive tests (sclerometer rebound and ultrasound) of mixtures are carried out. It is shown that the use of recycled materials can provide an increase in compressive strength of up to 34% with respect to conventional concrete. Life cycle cost and sustainability assessments indicate that concrete materials incorporating recycled aggregate possess good economic and environmental impacts.


Author(s):  
Cinthia Maia Pederneiras

The construction industry is considered the biggest waste producer in Europe. In order to encourage recycling, European Parliament decreed through the Waste Framework Directive 2008/98/EC, that at least 70% of construction and demolition waste should be recycled by 2020. From recycling plants, three types of recycled aggregates are produced. Recycled Concrete Aggregate, mainly from cementitious waste, as such as concrete and mortars residues; Recycled Masonry Aggregates mainly composed by recycled ceramic materials, as such as tiles and bricks residues; Mixed Recycled Aggregates based on rubble residues, from heterogenous materials waste. This research evaluated the technical feasibility of rendering mortars with Recycled Concrete Aggregates and Mixed Recycled Aggregates, in different volume incorporation of 0%, 20%, 50% and 100%. The experimental programme comprised an analyse of the fresh and hardened properties, regarding the water and mechanical behaviour of the mortars. From the results, it was noticed that the modified mortars presented a reduction in the modulus of elasticity, which its correlated to a less susceptibility to cracking. Regarding mechanical performance, the modified mortars obtained reduction of the flexural and compressive strength over time. However, it was not a significant harmful criterion. Therefore, the incorporation of recycled aggregates in cementitious materials is considered a technical and sustainable solution.


2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Mirjana Malešev ◽  
Vlastimir Radonjanin ◽  
Gordana Broćeta

Following an example of the world's great powers that developed the recycling industry after natural disasters and wars, the paper points to the possibility of using large quantities of construction and demolition waste, generated as a result of the recent floods in the BiH and Serbia. Based on the years of extensive experimental research, and the research conducted by eminent experts, an overview is provided of the most basic properties and application of recycled aggregate concrete. It has been shown that the application of coarse recycled concrete aggregate, as the component materials in the concrete mixtures, it is possible to produce structural concrete that can be satisfactory and even with high quality, which primarily depends on the characteristics of crushed demolished concrete.


Author(s):  
Burcu Aytekin ◽  
Ali Mardani-Aghabaglou

In this paper, a comprehensive literature review was conducted on the utilization of recycled concrete aggregate (RCA), which is the dominant construction and demolition waste material, in base and subbase layers and its comparison with natural aggregate (NA). The effects of crushing on the particles as a result of the compaction on the resilient modulus, permanent deformation, and California Bearing Ratio are analyzed. The paper also contains the NA consumption and waste disposal policies of different countries, RCA standards, and the environmental-economic reasons for its use. This literature review mainly focuses on pavement layers as this is the main application of RCA in the use of recycled materials. Developing integrated construction and demolition waste management will help achieve the primary goal of preventing and reducing the generation of these wastes, both locally and globally. In this way, not only is the main purpose of preventing the increase in the production of construction and demolition waste achieved, but also the reuse and recycling of the waste materials produced are encouraged. Results show that RCA has equivalent or better performance than virgin aggregate for almost any application with proper care and process control, and can be used in unbound pavement layers or other applications requiring compaction. But it is always recommended that its mechanical properties and durability performance be evaluated with full-scale tests before use. The information provided will be useful for contractors and engineers to evaluate alternative solutions and to explore the rational use of such sustainable materials in applications.


2016 ◽  
Vol 847 ◽  
pp. 156-165
Author(s):  
Marco Pepe ◽  
Eduardus Koenders ◽  
Romildo Dias Toledo Filho ◽  
Enzo Martinelli

The construction sector is more and more committed to reduce its environmental impacts. One of the key actions undertaken in the last decade deals with the ability of turning construction and demolition waste into new raw materials. For instance, the use of recycled aggregates for producing new concrete was one of the most investigated. Thus, in the last decade, plenty of researches were involved in project on characterising the mechanical behaviour of concrete made with recycled aggregates. However, these projects were mainly experimental in nature and generally led to merely empirical formulations. Conversely, this paper is intended at providing a contribution for predicting the mechanical properties of Recycled Aggregates Concrete (RAC). Particularly, it aims at quantifying the effect of replacing ordinary aggregates with Recycled Concrete Aggregates (RCA) on the resulting compressive strength of RAC. To this end, a conceptual model considering both the relevant physical properties of regular and recycled aggregates, including the attached mortar content, and the hydration reactions of Portland cement paste is proposed. The actual predictive capacity of the proposed model is assessed through an experimental validation against experimental tests carried out on several concrete batches produced with various values for the different keys parameters, such as the nominal water-to-cement ratio, the aggregates replacement ratio and the initial moisture condition of aggregates. Both the experimental data and the theoretical formulations proposed in this paper stem out from the inter-university collaboration developed as part of the EU funded EnCoRe Project (www.encore-fp7.unisa.it).


Sign in / Sign up

Export Citation Format

Share Document