scholarly journals Nonlinear analysis method of concrete structures under cyclic loading based on the generalized secant modulus

Author(s):  
Lívia Ramos Santos Pereira ◽  
Samuel Silva Penna

Abstract A smeared crack model to represent cyclic concrete behavior is presented in this work. The model is based on analytical and experimental studies from the literature and proposes a numerical approach using a new concept, the generalized secant modulus. The monotonic formulation is described, followed by the changes to include the cyclic response, and the stress-strain laws to reproduce the hysteresis. Simulations adopting the proposed model were compared with experimental tests of cyclic tension and compression available in the literature, resulting in consistent load cycles. Three-point bending was simulated to display the structural response under non-elementary load. Finally, a reinforced concrete beam was studied to evaluate the model performance under usual loadings. The results show the model capacity to reproduce cyclic analyses and its potential to be extended to general loadings.

2013 ◽  
Vol 372 ◽  
pp. 227-230
Author(s):  
Su Won Kang ◽  
Lim Won Gyun ◽  
Hyun Do Yun

This paper provides the analytical mode and results of three strain hardening cement composite (SHCC) infill walls tested under laterally cyclic loading. The main variables of the experimental tests were vertical slit and slit length. The comparison between the experimental and analytical results showed that the shear strength was different depending on the slit length. A two-dimensional FEM analytical model was constructed in order to predict the behavior of the tested walls. The smeared crack model for SHCC elements was determined non-orthotropically crack model considered that it is able to represent fixed cracking. A good agreement was found between the test and the prediction in terms of lateral load-displacement relations and damage distribution.


2003 ◽  
Vol 1853 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Anastasios M. loannides ◽  
Siddhartha Sengupta

Hillerborg's fictitious crack model is used to simulate numerically progressive crack development in simply supported concrete beams. The tools used in the simulation are a general-purpose finite element package for the linear elastic aspects of structural response and specially coded iterative program CRACKIT for tracking crack propagation. Data generated in this manner are used to study the specimen-size effect, that is, the dependence of fracture behavior on geometric, boundary, and loading conditions. The numerical approach presented is used successfully to reproduce experimental and numerical results obtained by independent investigators. The main objective for the research is to examine how principles of similitude proposed in recent years and the experience gained in the application of dimensional analysis to concrete pavement data interpretation can aid in the formulation of more mechanistic-based failure criteria, which would eventually lead to improved pavement design procedures. Because of its similarity to conventional fatigue curves, a plot prepared by Gustafsson, of the normalized bending stress against the brittleness number, is found to deserve additional consideration as a possible candidate for this purpose.


2018 ◽  
Vol 84 (12) ◽  
pp. 61-67
Author(s):  
V. A. Eryshev

The mechanical properties of a complex composite material formed by steel and hardened concrete, are studied. A technique of operative quality control of new credible concrete and reinforcement, both in laboratory and field conditions is developed for determination of the strength and strain characteristics of materials, as well as cohesion forces determining their joint operation under load. The design of the mobile unit is presented. The unit provides a possibility of changing the direction of loading and testing the reinforced element of the given shape both for tension and compression. Moreover, the nomenclature of testing equipment and the number of molds for manufacturing concrete samples substantially decrease. Using the values of forcing resulting in concrete cracking when the joint work of concrete and reinforcement is disrupted the values of the inherent stresses and strains attributed to the concrete shrinkage are determined. An analytical relationship between the forces and deformations of the reinforced concrete sample with central reinforcement is derived for axial tension and compression, with allowance for strains and stresses in the reinforcement and concrete resulted from concrete shrinkage. The results of experimental studies are presented, including tension diagrams and diagrams of developing axial deformations with an increase in the load under the central loading of the reinforced elements. A methodology of accounting for stresses and deformations resulted from concrete shrinkage is developed. The applicability of the derived analytical relationships between stresses and deformations on the material diagrams to calculations of the reinforced concrete structures in the framework of the deformation model is estimated.


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Mirela Dulama ◽  
Nicoleta Deneanu ◽  
Cristian Dulama ◽  
Margarit Pavelescu

The paper presents the experimental tests concerning the treatment by membrane techniques of radioactive aqueous waste. Solutions, which have been treated by using the bench-scale installation, were radioactive simulated secondary wastes from the decontamination process with modified POD. Generally, an increasing of the retention is observed for most of the contaminants in the reverse osmosis experiments with pre-treatment steps. The main reason for taking a chemical treatment approach was to selectively remove soluble contaminants from the waste. In the optimization part of the precipitation step, several precipitation processes were compared. Based on this comparison, mixed [Fe(CN)6]4-/Al3+/Fe2+ was selected as a precipitation process applicable for precipitation of radionuclides and flocculation of suspended solid. Increased efficiencies for cesium radionuclides removal were obtained in natural zeolite adsorption pre-treatment stages and this was due to the fact that volcanic tuff used has a special affinity for this element. Usually, the addition of powdered active charcoal serves as an advanced purifying method used to remove organic compounds and residual radionuclides; thus by analyzing the experimental data (for POD wastes) one can observe a decreasing of about 50% for cobalt isotopes subsequently to the active charcoal adsorption.. The semipermeable membranes were used, which were prepared by the researchers from the Research Center for Macromolecular Materials and Membranes, Bucharest. The process efficiency was monitored by gamma spectrometry.


2021 ◽  
Vol 11 (3) ◽  
pp. 1348
Author(s):  
A. Rashkovan ◽  
S.D. Amar ◽  
U. Bieder ◽  
G. Ziskind

The present paper provides a physically sound numerical modeling of liquid flows experimentally observed inside a vertical circular cylinder with a stationary envelope, rotating bottom and open top. In these flows, the resulting vortex depth may be such that the rotating bottom disk becomes partially exposed, and rather peculiar polygon shapes appear. The parameters and features of this work are chosen based on a careful analysis of the literature. Accordingly, the cylinder inner radius is 145 mm and the initial water height is 60 mm. The experiments with bottom disk rotation frequencies of 3.0, 3.4, 4.0 and 4.6 Hz are simulated. The chosen frequency range encompasses the regions of ellipse and triangle shapes as observed in the experimental studies reported in the literature. The free surface flow is expected to be turbulent, with the Reynolds number of O(105). The Large Eddy Simulation (LES) is adopted as the numerical approach, with a localized dynamic Subgrid-Scale Stresses (SGS) model including an energy equation. Since the flow obviously requires a surface tracking or capturing method, a volume-of-fluid (VOF) approach has been chosen based on the findings, where this method provided stable shapes in the ranges of parameters found in the corresponding experiments. Expected ellipse and triangle shapes are revealed and analyzed. A detailed character of the numerical results allows for an in-depth discussion and analysis of the mechanisms and features which accompany the characteristic shapes and their alterations. As a result, a unique insight into the polygon flow structures is provided.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.


2021 ◽  
Vol 11 (11) ◽  
pp. 5008
Author(s):  
Juan José del Coz-Díaz ◽  
Felipe Pedro Álvarez-Rabanal ◽  
Mar Alonso-Martínez ◽  
Juan Enrique Martínez-Martínez

The thermal inertia properties of construction elements have gained a great deal of importance in building design over the last few years. Many investigations have shown that this is the key factor to improve energy efficiency and obtain optimal comfort conditions in buildings. However, experimental tests are expensive and time consuming and the development of new products requires shorter analysis times. In this sense, the goal of this research is to analyze the thermal behavior of a wall made up of lightweight concrete blocks covered with layers of insulating materials in steady- and transient-state conditions. For this, numerical and experimental studies were done, taking outdoor temperature and relative humidity as a function of time into account. Furthermore, multi-criteria optimization based on the design of the experimental methodology is used to minimize errors in thermal material properties and to understand the main parameters that influence the numerical simulation of thermal inertia. Numerical Finite Element Models (FEM) will take conduction, convection and radiation phenomena in the recesses of lightweight concrete blocks into account, as well as the film conditions established in the UNE-EN ISO 6946 standard. Finally, the numerical ISO-13786 standard and the experimental results are compared in terms of wall thermal transmittance, thermal flux, and temperature evolution, as well as the dynamic thermal inertia parameters, showing a good agreement in some cases, allowing builders, architects, and engineers to develop new construction elements in a short time with the new proposed methodology.


2015 ◽  
Vol 813-814 ◽  
pp. 106-110
Author(s):  
Dalbir Singh ◽  
C. Ganesan ◽  
A. Rajaraman

Composites are being used in variety of applications ranging from defense and aircraft structures, where usage is profuse, to vehicle structures and even for repair and rehabilitation. Most of these composites are made of different laminates glued together with matrix for binding and now-a-days fibers of different types are embedded in a composite matrix. The characterizations of material properties of composites are mostly experimental with analytical modeling used to simulate the system behavior. But many times, the composites develop damage or distress in the form of cracking while they are in service and this adds a different dimension as one has to evaluate the response with the damage so that its performance during its remaining life is satisfactory. This is the objective of the present study where a hybrid approach using experimental results on damaged specimens and then analytical finite element are used to evaluate response. This will considerably help in remaining life assessment-RLA- for composites with damage so that design effectiveness with damage could be assessed. This investigation has been carried out on a typical composite with carbon fiber reinforcements, manufactured by IPCL Baroda (India) with trade name INDCARF-30. Experimental studies were conducted on undamaged and damaged specimens to simulate normal continuous loading and discontinuous loading-and-unloading states in actual systems. Based on the experimental results, material characterization inputs are taken and analytical studies were carried out using ANSYS to assess the response under linear and nonlinear material behavior to find the stiffness decay. Using stiffness decay RLA was computed and curves are given to bring the influence of type of damage and load at which damage had occurred.


Sign in / Sign up

Export Citation Format

Share Document