scholarly journals Effect of saliva contamination on bond strength witha hydrophilic composite resin

2013 ◽  
Vol 18 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Mauren Bitencourt Deprá ◽  
Josiane Xavier de Almeida ◽  
Taís de Morais Alves da Cunha ◽  
Luis Filipe Siu Lon ◽  
Luciana Borges Retamoso ◽  
...  

OBJECTIVE: To evaluate the influence of saliva contamination on the bond strength of metallic brackets bonded to enamel with hydrophilic resin composite. METHODS: Eighty premolars were randomly divided into 4 groups (n = 20) according to bonding material and contamination: G1) bonded with Transbond XT with no saliva contamination, G2) bonded with Transbond XT with saliva contamination, G3) bonded with Transbond Plus Color Change with no saliva contamination and G4) bonded with Transbond Plus Color Change with saliva contamination. The results were statistically analyzed (ANOVA/Tukey). RESULTS: The means and standard deviations (MPa) were: G1)10.15 ± 3.75; G2) 6.8 ± 2.54; G3) 9.3 ± 3.36; G4) 8.3 ± 2.95. The adhesive remnant index (ARI) ranged between 0 and 1 in G1 and G4. In G2 there was a prevalence of score 0 and similar ARI distribution in G3. CONCLUSION: Saliva contamination reduced bond strength when Transbond XT hydrophobic resin composite was used. However, the hydrophilic resin Transbond Plus Color Change was not affected by the contamination.

2013 ◽  
Vol 18 (4) ◽  
pp. 29-34 ◽  
Author(s):  
Josiane Xavier de Almeida ◽  
Mauren Bitencourt Deprá ◽  
Mariana Marquezan ◽  
Luciana Borges Retamoso ◽  
Orlando Tanaka

OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30) according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa) were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI) ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.


2013 ◽  
Vol 18 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Aisha de Souza Gomes Stumpf ◽  
Carlos Bergmann ◽  
José Renato Prietsch ◽  
Juliane Vicenzi

OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.


2015 ◽  
Vol 26 (4) ◽  
pp. 393-397 ◽  
Author(s):  
Adauê Siegert de Oliveira ◽  
Rafael Correa Mirapalhete ◽  
Cássia Cardozo Amaral ◽  
Rafael Ratto de Moraes

<p>This study investigated the effect of a modified photoactivation protocol using two simultaneous light-curing units on the shear bond strength (SBS) of brackets to enamel. Metal brackets were bonded to bovine incisors using the resin-based orthodontic cement Transbond XT (3M Unitek). Four photoactivation protocols of the orthodontic cement were tested (n=15): Control: photoactivation for 10 s on each proximal face of the bracket at a time; Simultaneous: photoactivation for 10 s on both proximal faces of the bracket at the same time; One side-20s: photoactivation for 20 s at one proximal face of the bracket only; and One side-10s: photoactivation for 10 s only at one proximal face of the bracket. SBS was tested immediately or after 1000 thermal cycles. Adhesive remnant index (ARI) was classified. Data were subjected to two-way ANOVA and Student-Newman-Keuls' test (α=0.05). Pooled means ± standard deviations for SBS to enamel (MPa) were: 10.2±4.2 (Control), 9.7±4.5 (Simultaneous), 5.6±3.1 (One side-20s), and 4.6±1.9 (One side-10s). Pooled SBS data for immediate and thermal cycled groups were 6.3±2.6 and 8.8±5.2. A predominance of ARI scores 1-2 and 0-1 was observed for the immediate and thermally cycled groups, respectively. In conclusion, simultaneous photoactivation of the orthodontic cement using two light-curing units, one positioned at each proximal face of the bracket, yielded similar bonding ability compared to the conventional light-curing method. Photoactivation of the orthodontic cement at one proximal face of the bracket only is not recommended, irrespective of the light-curing time used.</p>


2018 ◽  
Vol 47 (5) ◽  
pp. 298-304
Author(s):  
Caroline de Farias CHARAMBA ◽  
Renally Bezerra Wanderley LIMA ◽  
Sônia Saeger MEIRELES ◽  
Rosângela Marques DUARTE ◽  
Ana Karina Maciel ANDRADE

Abstract Introduction In order to simplify the technique, reduce the time required for direct adhesive restorations, bulk-fill resin composites have been developed be applied in bulk placement up to 4 mm increments. Objective Evaluating the color change (ΔE) and the microtensile bond strength (μTBS) of bulk fill resin composites (BFRC) to dentin after the immersion in regular beverages and the application of bleaching systems. Method Forty-five human molar teeth were randomly distributed in three groups according to the filling material (n=15): Filtek Bulk Fill, Tetric N Ceram Bulk Fill and Filtek Z100. The restored teeth were immersed in coffee, wine and distilled water (n=5) for 72 hours. The color parameters were measured using a spectrophotometer, having as basis the CIE L*a*b*, before and after tooth staining and application of bleaching processes. Subsequently, the teeth were sectioned to obtain the specimens for the microtensile testing. The ΔE values were analyzed applying the Kruskal-Wallis and the Wilcoxon tests, and the μTBS values were analyzed applying the ANOVA and the Bonferroni tests (p<0.05). Result There were no significant differences in the ∆E values when comparing the BFRCs to the conventional resin composite (CRC) in most of the experimental groups. The ∆E values did not present significant differences before and after the application of bleaching processes for all the tested resin composites. The BFRCs presented higher μTBS values than the CRC after exposure to distilled water, wine and bleaching agent. Conclusion The studied BFRCs presented similar color stability to the CRC. The BFRCs presented higher bond strength to the dentin than the CTC in most of the evaluated conditions. The bleaching agent was not effective in whitening the stained restored teeth.


2016 ◽  
Vol 27 (4) ◽  
pp. 430-435 ◽  
Author(s):  
Adriana Corrêa de Lima ◽  
Fuad Jacob Rached-Junior ◽  
Natália Spadini de Faria ◽  
Danielle Cristine Messias ◽  
Carolina de Andrade Lima Chaves ◽  
...  

Abstract The aim of this study was to assess the influence of sealer and light-curing unit on regional bond strength of resin composite to the weakened roots. Ninety roots of incisors were experimentally weakened, subjected to biomechanical preparation and filled with either Endofill, AH Plus or MTA Fillapex The roots were desobturated e reinforced with resin composite and fiber post light-activated with one of the light sources: halogen at 600 mW/ cm2 (QTH-600), LED at 800 mW/ cm2 (LED-800) and LED at 1500 mW/ cm2 (LED-1500). The roots were sectioned in slices from cervical, middle and apical root-reinforcement regions and analyzed by push out test, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Bond strength data were analyzed using three-way ANOVA and Tukey´s test (α=0.05). Specimens filled with AH Plus had higher bond strength, followed by MTA Fillapex and Endofill (p<0.05). For light-curing unit, LED-1500 presented superior bond strength than LED-800, which was higher than QTH-600 (p<0.05). The cervical region had the greatest mean values (p<0.05) while apical part showed the lowest bond strength (p<0.05). CLMS revealed remaining filling material in the dentinal tubules for all groups. The eugenol-containing sealer (Endofill) compromised the push-out bond strength of composite resin to the root dentin. Bond strength was favored in the cervical region, and when LED-1500 was used.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Rosalía Contreras-Bulnes ◽  
Rogelio J. Scougall-Vilchis ◽  
Laura E. Rodríguez-Vilchis ◽  
Claudia Centeno-Pedraza ◽  
Oscar F. Olea-Mejía ◽  
...  

The purpose of this study was to evaluate the shear bond strength, the adhesive remnant index scores, and etch surface of teeth prepared for orthodontic bracket bonding with self-etching primer and Er:YAG laser conditioning. One hundred and twenty bovine incisors were randomly divided into four groups. In Group I (Control), the teeth were conditioned with 35% phosphoric acid for 15 seconds. In Group II the teeth were conditioned with Transbond Plus SEP (5 sec); III and IV were irradiated with the Er:YAG 150 mJ (11.0 J/cm2), 150 mJ (19.1 J/cm2), respectively, at 7–12 Hz with water spray. After surface preparation, upper central incisor stainless steel brackets were bonded with Transbond Plus Color Change Adhesive. The teeth were stored in water at 37°C for 24 hours and shear bond strengths were measured, and adhesive remnant index (ARI) was determined. The conditioned surface was observed under a scanning electron microscope. One-way ANOVA and chi-square test were used. Group I showed the significantly highest values of bond strength with a mean value of 8.2 megapascals (MPa). The lesser amount of adhesive remnant was found in Group III. The results of this study suggest that Er:YAG laser irradiation could not be an option for enamel conditioning.


2013 ◽  
Vol 24 (4) ◽  
pp. 349-352 ◽  
Author(s):  
Regina Claudia Ramos Colares ◽  
Jiovanne Rabelo Neri ◽  
Andre Mattos Brito de Souza ◽  
Karina Matthes de Freitas Pontes ◽  
Juliano Sartori Mendonca ◽  
...  

The aim of this study was to evaluate the influence of ceramic surface treatments and silane drying temperature on the microtensile bond strength (µTBS) of a resin composite to a lithium disilicate ceramic. Twenty blocks (7x7x5 mm) of lithium disilicate-based hotpressed ceramic were fabricated and randomly divided into 4 groups: G1: acid etching with 9.5% hydrofluoric acid for 20 s and drying silane with room-temperature air; G2: acid etching with 9.5% hydrofluoric acid for 20 s and drying silane with 45 ± 5 °C warm air; G3: airborne-particle abrasion with 50 µm aluminum oxide particles and drying silane with 45 ± 5 °C warm air; G4: airborne-particle abrasion with 50 µm aluminum oxide particles and drying silane with air at room-temperature. After treatments, an adhesive system (Single Bond 2) was applied, light-cured and direct restorations were built up with a resin composite (Filtek Z250). Each specimen was stored in distilled water at 37 °C for 24 h and cut into ceramic-composite beams with 1 mm2 of cross-sectional area for µTBS testing. Statistical analysis was performed with one-way ANOVA and Student-Newman-Keuls test (α=0.05). µTBS means (S.D.) in MPa were: G1: 32.14 (7.98), G2: 35.00 (7.77) and G3: 18.36 (6.17). All specimens of G4 failed during the cutting. G1 and G2 presented significantly higher µTBS than G3 (p<0.05). There was no statistically significant difference between G1 and G2 (p>0.05). As far as the bond strength is concerned, surface pretreatment of lithium-disilicate ceramic with hydrofluoric acid and silane application can be used as an alternative to repair ceramic restorations with composite resin, while surface pretreatment with sandblasting should be avoided.


2014 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Dewi Puspitasari ◽  
Andi Soufyan ◽  
Ellyza Herda

Composite resin is a widely used aesthetic restoration. The restoration can fail due to secondary caries. Chlorhexidinegluconate 2% is used as a cavity disinfectant to eliminate microorganisms on the prepared cavity and to prevent thesecondary caries. The purpose of this study was to analyze the effect of chlorhexidine gluconate 2% to the bondstrength of composite resin with self etch system adhesive on dentine. Sixteen specimens of buccal dentine of premolarscrown are divided into 2 different groups. Group I: Clearfil SE Bond self-etch primer was applied for 20 seconds,Clearfil SE Bond bonding was applied for 5 seconds and polymerized for 10 seconds. Composite resin was constructedincrementally and polymerized for 20 seconds. Group II: prior to self etch primer application as in group I,chlorhexidine gluconate 2% was applied for 15 seconds. Shear bond strength was tested using Testing machine andanalyzed with unpaired T test. The highest shear bond strength was obtained by applying chlorhexidine gluconate 2%.The study concludes that chlorhexidine gluconate 2% application to dentine did not affect significantly to the bondstrength composite resin using self etch adhesive systems.


2020 ◽  
Vol 31 (1) ◽  
pp. 52-56
Author(s):  
Gustavo Vallandro Lopes ◽  
Lourenço Correr-Sobrinho ◽  
Américo Bortolazzo Correr ◽  
Ana Paula Terossi de Godoi ◽  
Silvia Amélia Scudeler Vedovello ◽  
...  

Abstract The present study was evaluated the effect of different light activation and thermocycling methods on the shear bond strength (SBS) and on the adhesive remnant index (ARI) of metal brackets bonded to feldspathic ceramic. Hundred metal brackets were bonded to 20 porcelain cylinders, divided into four groups (n=25) based on light activation and thermocycling processes. The cylinders were etched with 10% hydrofluoric acid for 60 s and coated with two layers of silane. The brackets were bonded with Transbond XT composite resin. Light activation in Groups 1 and 3 was performed during 3 s using the VALO Ortho Cordless appliance with irradiance 3,200 mW/cm2 and in Groups 2 and 4 for 40 s using Optilight Max appliance with irradiance 1,200 mW/cm². The samples were stored in deionized water at 37°C for 24 h and the samples from Groups 1 and 2 were submitted to the SBS test at a rate of 1 mm/min, whereas the samples from Groups 3 and 4 were submitted to 7,000 thermal cycles (5°/55°C) before to the SBS test. The data were assessed by two-way analysis of variance and by Tukey’s test (a=0.05). No significant difference was observed between SBS means in the different light activation devices used. The samples subjected to thermocycling revealed lower SBS values (p≤0.05). There was predominance of score 0 for ARI in all groups. Therefore, the different light activation methods did not interfere in SBS, but thermocycling reduced SBS.


Sign in / Sign up

Export Citation Format

Share Document