Back to the Future? Molecules Take Us Back to the 1925 Classification of the Lembophyllaceae (Bryopsida)

2009 ◽  
Vol 34 (3) ◽  
pp. 443-454 ◽  
Author(s):  
Dietmar Quandt ◽  
Sanna Huttunen ◽  
Ray Tangney ◽  
Michael Stech

Although the Lembophyllaceae has undergone considerable revision during the last century, the generic and familial level relationships of this pleurocarpous moss family are still poorly understood. To address this problem, a generic revision of the Lembophyllaceae based on molecular data was undertaken. We analyzed two plastid markers, the trnL-trnF and the psbT-psbH region in combination with the ITS2 of nuclear ribosomal DNA. The molecular data reveal that the current circumscription of the family is too narrow and that several genera previously placed in the Lembophyllaceae should be reincluded. The family includes: Bestia, Camptochaete, Dolichomitra, Dolichomitriopsis, Fallaciella, Fifea, Isothecium, Lembophyllum, Looseria stat. nov., Pilotrichella, Rigodium, Tripterocladium, and Weymouthia. Looseria contains a single species: Looseria orbiculata comb. nov. Acrocladium is excluded and provisionally accommodated in the Lepyrodontaceae. Generic limits supported by the molecular data support a return to the early twentieth century family concept of Brotherus. The analyses indicate that the segregate genus Orthostichella is distinct from its parent genus Pilotrichella, probably at the family level. Whereas Pilotrichella is resolved within the Lembophyllaceae, Orthostichella clusters with Porotrichum and Porothamnium forming a clade (OPP-clade) sister to the remaining Neckeraceae and Lembophyllaceae. Hence, the Neckeraceae is paraphyletic. Recognition of the OPP-clade as a new family is desirable but awaits the results of detailed ongoing morphological studies.

2021 ◽  
Vol 87 ◽  
pp. 235-249
Author(s):  
István Mikó ◽  
Monique Raymond ◽  
Elijah J. Talamas

Platygastridae (Hymenoptera) is a diverse family of parasitoid wasps for which few studies of internal morphology have been conducted. The monophyly of the group is undisputed based on recently published molecular data, but based on morphology, the family is diagnosable from other platygastroids only by a combination of character reductions. In the present study we explored the mesosoma of Platygastroidea and found two new synapomorphies for Platygastridae: an externally visible anterior mesofurcal pit, which corresponds to an invagination that connects to the anterior portion of the mesofurca, and internally, a posteriorly shifted origin of the first wing flexors. The absence of a mesofurcal bridge and the exclusively mesopectal origin of the fore wing flexors are treated as synapomorphies for Platygastridae+Janzenellidae. Phylogenetic implications and evolutionary hypotheses regarding these traits are discussed.


Author(s):  
Shigeki Kobayashi ◽  
Haruka Matsuoka ◽  
Masaaki Kimura ◽  
Jae-Cheon Sohn ◽  
Yutaka Yoshiyasu ◽  
...  

The systematic position of Tonza Walker, 1864 is re-evaluated, based on the characteristics of immature stages and DNA barcodes. Larvae and pupae of Tonza citrorrhoa Meyrick, 1905 are described and illustrated for the first time. Larvae of this species form a loose web among the leaves and branches of the host plant, Putranjiva matsumurae Koidz. (Putranjivaceae Endl.). The immature stages of Tonza exhibit four unique apomorphies including: in the larva, the prolegs on A5 and A6 absent, and the seta L2 on the A1–A8 very small; in the pupa, four minute knobs are positioned in the middle portion on abdominal segments V and VI; while its caudal processes possess a W-shaped spine with numerous minute spines. These characteristics clearly distinguish Tonza from other yponomeutoid families and hence, we propose a new family group name, Tonzidae Kobayashi & Sohn fam. nov., for the genus Tonza. Existing DNA barcode data suggest a relationship with Glyphipterigidae Stainton, 1854. The family level status of Tonzidae fam. nov. provides a hypothesis that needs to be tested with larger molecular data.


2006 ◽  
Vol 75 (01-02) ◽  
pp. 23-73 ◽  
Author(s):  
Hiroaki Karasawa ◽  
Carrie E. Schweitzer

A phylogenetic analysis was conducted including representatives from all recognized extant and extinct families of the Xanthoidea sensu lato, resulting in one new family, Hypothalassiidae. Four xanthoid families are elevated to superfamily status, resulting in Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Goneplacoidea, and numerous subfamilies are elevated to family status. The Mathildellidae is moved from the Goneplacidae to the Portunoidea. Diagnoses for all superfamilies and families discussed herein are provided, embracing characters typically used by biologists as well as readily fossilized features of the dorsal carapace, sternum, abdomen, and chelipeds. All genera known from the fossil record at one time referred to the Xanthidae sensu lato, Xanthoidea sensu lato, or Goneplacidae sensu latowere evaluated as to their family level placement and as a result, the family-level placement of many of these genera has been changed herein. Balcacarcinusnew substitute name, is provided herein for BittneriaSchweitzer and Karasawa, 2004.


2019 ◽  
Vol 94 ◽  
Author(s):  
S.V. Shchenkov ◽  
S.A. Denisova ◽  
G.A. Kremnev ◽  
A.A. Dobrovolskij

Abstract The phylogenetic position of most xiphidiocercariae from subgroups Cercariae virgulae and Cercariae microcotylae remains unknown or unclear, even at the family level. In this paper, we studied the morphology and molecular phylogeny of 15 microcotylous and virgulate cercariae (11 new and four previously described ones). Based on morphological and molecular data, we suggested five distinct morphological types of xiphidiocercariae, which are a practical alternative to Cercariae virgulae and Cercariae microcotylae subgroups. Four of these types correspond to actual digenean taxa (Microphallidae, Lecithodendriidae, Pleurogenidae and Prosthogonimidae), while the fifth is represented by Cercaria nigrospora Wergun, 1957, which we classified on the basis of molecular data for the first time. We reassessed the relative importance of morphological characters used for the classification of virgulate and microcotylous cercariae, and discussed the main evolutionary trends within xiphidiocercariae. Now stylet cercariae can be reliably placed into several sub-taxa of Microphalloidea on the basis of their morphological features.


Author(s):  
Timothy D. O'Hara ◽  
Sabine Stöhr ◽  
Andrew F. Hugall ◽  
Ben Thuy ◽  
Alexander Martynov

A new classification of Ophiuroidea, considering family rank and above, is presented. The new family and superfamily taxa in O’Hara et al. (2017) were proposed to ensure a better readability of the new phylogeny but are unavailable under the provisions of the ICZN. Here, the morphological diagnoses to all 33 families and five superfamilies are provided. Ten new families, Ophiosphalmidae fam. nov., Ophiomusaidae fam. nov., Ophiocamacidae fam. nov., Ophiopteridae fam. nov., Clarkcomidae fam. nov., Ophiopezidae fam. nov., Ophiernidae fam. nov., Amphilimnidae fam. nov., Ophiothamnidae fam. nov. and Ophiopholidae fam. nov., are described. The family Ophiobyrsidae Matsumoto, 1915, not yet discovered in the previous publication, is added, based on new molecular data. A new phylogenetic reconstruction is presented. Definitions of difficult-to-apply morphological characters are given.


2011 ◽  
Vol 20 (1) ◽  
pp. 161-173
Author(s):  
A.P. Kassatkina

Resuming published and own data, a revision of classification of Chaetognatha is presented. The family Sagittidae Claus & Grobben, 1905 is given a rank of subclass, Sagittiones, characterised, in particular, by the presence of two pairs of sac-like gelatinous structures or two pairs of fins. Besides the order Aphragmophora Tokioka, 1965, it contains the new order Biphragmosagittiformes ord. nov., which is a unique group of Chaetognatha with an unusual combination of morphological characters: the transverse muscles present in both the trunk and the tail sections of the body; the seminal vesicles simple, without internal complex compartments; the presence of two pairs of lateral fins. The only family assigned to the new order, Biphragmosagittidae fam. nov., contains two genera. Diagnoses of the two new genera, Biphragmosagitta gen. nov. (type species B. tarasovi sp. nov. and B. angusticephala sp. nov.) and Biphragmofastigata gen. nov. (type species B. fastigata sp. nov.), detailed descriptions and pictures of the three new species are presented.


2021 ◽  
Vol 20 (7) ◽  
pp. 911-927
Author(s):  
Lucia Muggia ◽  
Yu Quan ◽  
Cécile Gueidan ◽  
Abdullah M. S. Al-Hatmi ◽  
Martin Grube ◽  
...  

AbstractLichen thalli provide a long-lived and stable habitat for colonization by a wide range of microorganisms. Increased interest in these lichen-associated microbial communities has revealed an impressive diversity of fungi, including several novel lineages which still await formal taxonomic recognition. Among these, members of the Eurotiomycetes and Dothideomycetes usually occur asymptomatically in the lichen thalli, even if they share ancestry with fungi that may be parasitic on their host. Mycelia of the isolates are characterized by melanized cell walls and the fungi display exclusively asexual propagation. Their taxonomic placement requires, therefore, the use of DNA sequence data. Here, we consider recently published sequence data from lichen-associated fungi and characterize and formally describe two new, individually monophyletic lineages at family, genus, and species levels. The Pleostigmataceae fam. nov. and Melanina gen. nov. both comprise rock-inhabiting fungi that associate with epilithic, crust-forming lichens in subalpine habitats. The phylogenetic placement and the monophyly of Pleostigmataceae lack statistical support, but the family was resolved as sister to the order Verrucariales. This family comprises the species Pleostigma alpinum sp. nov., P. frigidum sp. nov., P. jungermannicola, and P. lichenophilum sp. nov. The placement of the genus Melanina is supported as a lineage within the Chaetothyriales. To date, this genus comprises the single species M. gunde-cimermaniae sp. nov. and forms a sister group to a large lineage including Herpotrichiellaceae, Chaetothyriaceae, Cyphellophoraceae, and Trichomeriaceae. The new phylogenetic analysis of the subclass Chaetothyiomycetidae provides new insight into genus and family level delimitation and classification of this ecologically diverse group of fungi.


2021 ◽  
Vol 736 ◽  
pp. 137-182
Author(s):  
Daniel Burckhardt ◽  
David Ouvrard ◽  
Diana M. Percy

The classification of the superfamily Psylloidea is revised to incorporate findings from recent molecular studies, and to integrate a reassessment of monophyla primarily based on molecular data with morphological evidence and previous classifications. We incorporate a reinterpretation of relevant morphology in the light of the molecular findings and discuss conflicts with respect to different data sources and sampling strategies. Seven families are recognised of which four (Calophyidae, Carsidaridae, Mastigimatidae and Triozidae) are strongly supported, and three (Aphalaridae, Liviidae and Psyllidae) weakly or moderately supported. Although the revised classification is mostly similar to those recognised by recent authors, there are some notable differences, such as Diaphorina and Katacephala which are transferred from Liviidae to Psyllidae. Five new subfamilies and one new genus are described, and one secondary homonym is replaced by a new species name. A new or revised status is proposed for one family, four subfamilies, four tribes, seven subtribes and five genera. One tribe and eight genera / subgenera are synonymised, and 32 new and six revised species combinations are proposed. All recognised genera of Psylloidea (extant and fossil) are assigned to family level taxa, except for one which is considered a nomen dubium.


2020 ◽  
Vol 34 (2) ◽  
pp. 113 ◽  
Author(s):  
Rafael Robles ◽  
Peter C. Dworschak ◽  
Darryl L. Felder ◽  
Gary C. B. Poore ◽  
Fernando L. Mantelatto

The axiidean families Callianassidae and Ctenochelidae, sometimes treated together as Callianassoidea, are shown to represent a monophyletic taxon. It comprises 265 accepted species in 74 genera, twice this number of species if fossil taxa are included. The higher taxonomy of the group has proved difficult and fluid. In a molecular phylogenetic approach, we inferred evolutionary relationships from a maximum-likelihood (ML) and Bayesian analysis of four genes, mitochondrial 16S rRNA and 12S rRNA along with nuclear histone H3 and 18S rRNA. Our sample consisted of 298 specimens representing 123 species plus two species each of Axiidae and Callianideidae serving as outgroups. This number represented about half of all known species, but included 26 species undescribed or not confidently identified, 9% of all known. In a parallel morphological approach, the published descriptions of all species were examined and detailed observations made on about two-thirds of the known fauna in museum collections. A DELTA (Description Language for Taxonomy), database of 135 characters was made for 195 putative species, 18 of which were undescribed. A PAUP analysis found small clades coincident with the terminal clades found in the molecular treatment. Bayesian analysis of a total-evidence dataset combined elements of both molecular and morphological analyses. Clades were interpreted as seven families and 53 genera. Seventeen new genera are required to reflect the molecular and morphological phylograms. Relationships between the families and genera inferred from the two analyses differed between the two strategies in spite of retrospective searches for morphological features supporting intermediate clades. The family Ctenochelidae was recovered in both analyses but the monophyly of Paragourretia was not supported by molecular data. The hitherto well recognised family Eucalliacidae was found to be polyphyletic in the molecular analysis, but the family and its genera were well defined by morphological synapomorphies. The phylogram for Callianassidae suggested the isolation of several species from the genera to which they had traditionally been assigned and necessitated 12 new generic names. The same was true for Callichiridae, with stronger ML than Bayesian support, and five new genera are proposed. Morphological data did not reliably reflect generic relationships inferred from the molecular analysis though they did diagnose terminal taxa treated as genera. We conclude that discrepancies between molecular and morphological analyses are due at least in part to missing sequences for key species, but no less to our inability to recognise unambiguously informative morphological synapomorphies. The ML analysis revealed the presence of at least 10 complexes wherein 2–4 cryptic species masquerade under single species names.


Zootaxa ◽  
2010 ◽  
Vol 2400 (1) ◽  
pp. 66 ◽  
Author(s):  
D. J. WILLIAMS ◽  
P. J. GULLAN

Since Cockerell (1905) erected the family-group name Pseudococcini, the name has become widely used for all mealybugs. Lobdell (1930) raised the status of the group to family level as the Pseudococcidae, but it was not until Borchsenius (1949) and Ferris (1950) accepted the family level that the rank of Pseudococcidae became more widely accepted within the superfamily Coccoidea. Various tribes and subtribes have been introduced without any reliable classification of the family.


Sign in / Sign up

Export Citation Format

Share Document