A Global Phylogenomic Study of the Thelypteridaceae

2021 ◽  
Vol 46 (4) ◽  
pp. 891-915
Author(s):  
Susan Fawcett ◽  
Alan R. Smith ◽  
Michael Sundue ◽  
J. Gordon Burleigh ◽  
Emily B. Sessa ◽  
...  

Abstract— The generic classification of the Thelypteridaceae has been the subject of much controversy. Proposed taxonomic systems have varied from recognizing the approximately 1200 species in the family within the single genus Thelypteris, to systems favoring upwards of 30 genera. Insights on intrafamilial relationships, especially for neotropical taxa, have been gained from recent phylogenetic studies; however, in the most recent classification, 10 of 30 recognized genera are either non-monophyletic or untested. We sequenced 407 nuclear loci for 621 samples, representing all recognized genera and approximately half the known species diversity. These were analyzed using both maximum likelihood analysis of a concatenated matrix and multi-species coalescent methods. Our phylogenomic results, informed by recently published morphological evidence, provide the foundation for a generic classification which recircumscribed 14 genera and recognized seven new genera. The 37 monophyletic genera sampled demonstrate greater geographic coherence than previous taxonomic concepts suggested. Additionally, our results demonstrate that certain morphological characters, such as frond division, are evolutionarily labile and are thus inadequate for defining genera.

2017 ◽  
Vol 182 (4) ◽  
pp. 808-829 ◽  
Author(s):  
James A Vanegas-Ríos

AbstractStevardiinae, which consists of 326 species and 44 genera, is a monophyletic subfamily within the family Characidae. In a recent classification of the subfamily, the tribe Stevardiini was expanded from three (Corynopoma, Gephyrocharax and Pterobrycon) to six genera by the addition of Chrysobrycon, Hysteronotus and Pseudocorynopoma. However, no morphological evidence has supported this definition of the tribe and the monophyly of Gephyrocharax. To address these issues, a phylogenetic study of most stevardiins focusing on Gephyrocharax was conducted. A data matrix including 532 characters and 213 taxa (73 stevardiines, 19 of which were stevardiins) was processed using maximum parsimony in TNT 1.5. All characters were analysed under extended implied weighting, exploring 21 k values. A strict consensus (comprising the most stables trees obtained) was used as the final topology. The results support the current definition of Stevardiini, as well as the monophyly of Chrysobrycon, Gephyrocharax and Pterobrycon. Corynopoma was obtained as the sister group of Gephyrocharax, the latter being phylogenetically diagnosed by two synapomorphies associated with caudal-fin morphology of adult males. The following interspecific relationships within Gephyrocharax are hypothesised: (G. martae ((G. chocoensis (G. major (G. atracaudatus, G. intermedius))) (G. venezuelae (G. sinuensis (G. valencia (G. caucanus (G. melanocheir, G. torresi)))))))).


2020 ◽  
Author(s):  
Bruno C. Genevcius ◽  
Caroline Greve ◽  
Samantha Koehler ◽  
Rebecca B. Simmons ◽  
David A. Rider ◽  
...  

ABSTRACTPentatomidae is the third largest family of true bugs, comprising over 40 tribes. Few tribes have been studied in a phylogenetic context, and none of them have been examined using molecular data. Moreover, little is known about the evolution of key morphological characters widely used in taxonomic and phylogenetic studies at multiple levels. Here, we conduct a phylogenetic study of the tribe Chlorocorini (Pentatominae) combining 69 morphological characters and five DNA loci. We use the inferred phylogeny to reconstruct the evolution of key morphological characters such as the spined humeral angles of the pronotum, a dorsal projection on the apices of the femora and characters of male genitalia. We provide solid evidence that the tribe as currently recognized is not monophyletic based both on DNA and morphological data. The genera Arvelius Spinola and Eludocoris Thomas were consistently placed outside of the Chlorocorini, while the remaining genera were found to form a monophyletic group. We also show that nearly all morphological diagnostic characters for the tribe are homoplastic. The only exception is the development of the hypandrium, which, contrary to expectations for genital traits, showed the slowest evolutionary rates. In contrast, the most rapidly evolving trait is the length of the ostiolar ruga, which may be attributed to selection favoring anti-predatory behavior and other functions of its associated scent glands. Lastly, we also provide a preliminary glimpse of the main phylogenetic relationships within the Pentatomidae, which indicates that most of the included subfamilies and tribes are not monophyletic. Our results suggest that the current subfamily-level classification of Pentatomidae is not adequate to reflect its evolutionary history, and we urge for a more complete phylogeny of the family.


Phytotaxa ◽  
2017 ◽  
Vol 319 (1) ◽  
pp. 56 ◽  
Author(s):  
LAURA R. E. BRISCOE ◽  
NYREE J. C. ZEREGA ◽  
H. THORSTEN LUMBSCH ◽  
MICHAEL STECH ◽  
EKAPHAN KRAICHAK ◽  
...  

The liverwort subfamily Acrobolboideae has historically contained the three genera: Acrobolbus, Marspidium, and Tylimanthus. Generic delimitations in this subfamily have been historically inferred from morphological characters, specifically the location of gametangia. Taxonomists have had difficulty separating the genera, with some combining Tylimanthus and Acrobolbus, whereas others merged Marsupidium and Tylimanthus. We used five chloroplast loci to reconstruct a phylogeny of the group, revealing all three genera are polyphyletic as currently described. An assessment of key morphological characters used to separate genera in the subfamily resulted in several observations: characters used to circumscribe Acrobolbus were homoplasious; characters used to circumscribe each genus (e.g., the placement of female reproductive organs) do not reflect phylogenetic relationships; and the evolutionary trajectories of some characters (i.e., the number of antheridia, male reproductive organs, per male bract) correspond directly with previous evolutionary hypotheses for the family, but do not follow historical taxonomic inferences. Irrespective of generic concepts, several well–supported clades within the phylogeny have a strong biogeographic structure. Using these lines of evidence, we recognize Acrobolbus as a single genus in Acrobolboideae.


2011 ◽  
Vol 20 (1) ◽  
pp. 161-173
Author(s):  
A.P. Kassatkina

Resuming published and own data, a revision of classification of Chaetognatha is presented. The family Sagittidae Claus & Grobben, 1905 is given a rank of subclass, Sagittiones, characterised, in particular, by the presence of two pairs of sac-like gelatinous structures or two pairs of fins. Besides the order Aphragmophora Tokioka, 1965, it contains the new order Biphragmosagittiformes ord. nov., which is a unique group of Chaetognatha with an unusual combination of morphological characters: the transverse muscles present in both the trunk and the tail sections of the body; the seminal vesicles simple, without internal complex compartments; the presence of two pairs of lateral fins. The only family assigned to the new order, Biphragmosagittidae fam. nov., contains two genera. Diagnoses of the two new genera, Biphragmosagitta gen. nov. (type species B. tarasovi sp. nov. and B. angusticephala sp. nov.) and Biphragmofastigata gen. nov. (type species B. fastigata sp. nov.), detailed descriptions and pictures of the three new species are presented.


2016 ◽  
Vol 47 (1) ◽  
pp. 53-82 ◽  
Author(s):  
Werner P. Strümpher ◽  
Martin H. Villet ◽  
Catherine L. Sole ◽  
Clarke H. Scholtz

Extant genera and subgenera of the Trogidae (Coleoptera: Scarabaeoidea) are reviewed. Contemporary classifications of this family have been based exclusively on morphological characters. The first molecular phylogeny for the family recently provided strong support for the relationships between morphologically defined genera and subgenera. On the basis of morphological, molecular and biogeographical evidence, certain taxonomic changes to the genus-level classification of the family are now proposed. The family is confirmed as consisting of two subfamilies, Omorginae Nikolajev and Troginae MacLeay, the former with two genera,OmorgusErichson andPolynoncusBurmeister, and the latter with two genera,TroxFabricius andPhoberusMacLeaystat. rev.Phoberusis restored to generic rank to include all Afrotropical (including Madagascan endemic) species;Afromorgusis confirmed at subgeneric rank within the genusOmorgus; and the monotypic Madagascan genusMadagatroxsyn. n.is synonymised withPhoberus.The current synonymies ofPseudotroxRobinson (withTrox),ChesasBurmeister,LagopelusBurmeister andMegalotroxPreudhomme de Borre (all withOmorgus) are all accepted to avoid creating speculative synonyms before definitive phylogenetic evidence is available. New combinations resulting from restoringPhoberusto a monophyletic genus are listed in Appendix A.


Zootaxa ◽  
2010 ◽  
Vol 2648 (1) ◽  
pp. 45 ◽  
Author(s):  
PETER A. LARSEN ◽  
MARÍA R. MARCHÁN-RIVADENEIRA ◽  
ROBERT J. BAKER

Fruit-eating bats of the genus Artibeus are widely distributed across the Neotropics and are one of the most recently evolved assemblages of the family Phyllostomidae. Although the taxonomy and systematics of species of Artibeus has been the subject of an intense historical debate, the most current taxonomic arrangements recognize approximately eleven species within the genus. However, recent phylogenetic studies indicate that species diversity within South and Middle American populations of Artibeus is underestimated. South American populations referable to A. jamaicensis aequatorialis are of considerable interest because previous studies of mitochondrial DNA variation identified potential species level variation west of the Andes Mountains. In this study we use morphometric and genetic data (nuclear AFLPs) to investigate the taxonomic status of A. j. aequatorialis. Our results indicate that elevating aequatorialis to species level is appropriate based on statistically supported reciprocal monophyly in mitochondrial and nuclear datasets and diagnostic morphological characters. In light of our results, and of those presented elsewhere, we provide a revised classification of the genus.


2020 ◽  
Vol 86 (1) ◽  
pp. 1-26
Author(s):  
S T Williams ◽  
Y Kano ◽  
A Warén ◽  
D G Herbert

ABSTRACT The assignment of species to the vetigastropod genus Solariella Wood, 1842, and therefore the family Solariellidae Powell, 1951, is complicated by the fact that the type species (Solariella maculata Wood, 1842) is a fossil described from the Upper Pliocene. Assignment of species to genera has proved difficult in the past, and the type genus has sometimes acted as a ‘wastebasket’ for species that cannot easily be referred to another genus. In the light of a new systematic framework provided by two recent publications presenting the first molecular phylogenetic data for the group, we reassess the shell characters that are most useful for delimiting genera. Shell characters were previously thought to be of limited taxonomic value above the species level, but this is far from the case. Although overall shell shape is not a reliable character, our work shows that shell characters, along with radular and anatomical characters, are useful for assigning species to genera. Sculpture of the early teleoconch (the region immediately following the protoconch) and the columella are particularly useful characters that have not been used regularly in the past to distinguish genera. However, even with the combination of all morphological characters used in this study (shell, radular and eye), a few species are still difficult to assign to genera and in such cases molecular systematic data are essential. In the present study, we discuss 13 genera—12 of which were recovered as well-supported clades in recent molecular systematic studies—and provide morphological characters to distinguish them. We describe several new taxa: Chonospeira n. gen. (referred to as ‘clade B’ in previous molecular systematic studies), Phragmomphalina n. gen. (Bathymophila in part in molecular systematic studies) and Phragmomphalina vilvensi n. sp. (type species of Phragmomphalina n. gen.). We synonymize Hazuregyra Shikama, 1962 with Minolia A. Adams, 1860, Minolia subangulata Kuroda & Habe, 1952 with Minolia punctata A. Adams, 1860 and M. gemmulata Kuroda & Habe, 1971 with M. shimajiriensis (MacNeil, 1960). We also present the following new combinations: Bathymophila bairdii (Dall, 1889), B. dawsoni (Marshall, 1979), B. regalis (Marshall, 1999), B. wanganellica (Marshall, 1999), B. ziczac (Kuroda & Habe in Kuroda, Habe & Oyama, 1971), Chonospeira nuda (Dall, 1896), C. iridescens (Habe, 1961), C. ostreion (Vilvens, 2009), C. strobilos (Vilvens, 2009), Elaphriella corona (Lee & Wu, 2001), E. diplax (Marshall, 1999), E. meridiana (Marshall, 1999), E. olivaceostrigata (Schepman, 1908), E. opalina (Shikama & Hayashi, 1977), Ilanga norfolkensis (Marshall, 1999), I. ptykte (Vilvens, 2009), I. zaccaloides (Vilvens, 2009), Minolia shimajiriensis (MacNeil, 1960), M. watanabei (Shikama, 1962), Phragmomphalina alabida (Marshall, 1979), P. diadema (Marshall, 1999), P. tenuiseptum (Marshall, 1999), Spectamen euteium (Vilvens, 2009), S. basilicum (Marshall, 1999), S. exiguum (Marshall, 1999) and S. flavidum (Marshall, 1999).


2011 ◽  
Vol 25 (2) ◽  
pp. 143 ◽  
Author(s):  
Prashant P. Sharma ◽  
Carlos E. Prieto ◽  
Gonzalo Giribet

Among Opiliones, Afrotropical lineages constitute some of the least studied groups in comparison with those endemic to other biogeographic provinces. Based upon morphological evidence, we erect Pyramidopidae, fam. nov. to distinguish a group of Laniatores from the family Phalangodidae. We review evidence from recent molecular phylogenetic studies that corroborate the independence of Pyramidopidae, fam. nov. from previously described families and support its sister relationship to another largely Afrotropical group, the family Assamiidae. The monotypic genus Maiorerus Rambla, 1993 is transferred to Pyramidopidae, fam. nov. The new family comprises 12 genera geographically restricted to Africa and the adjacent Canary Islands. Interfamilial relationships of the derived Laniatores are discussed in the context of gross and genitalic morphology.


Phytotaxa ◽  
2013 ◽  
Vol 100 (1) ◽  
pp. 6 ◽  
Author(s):  
S. ROBBERT GRADSTEIN

Lejeuneaceae are the largest family of the liverworts with at least one thousand species in 68 currently accepted genera. The number of genera is much lower than accepted previously and was reduced based on recent molecular work. This paper present a first classification of Lejeuneaceae based on integrated molecular-phylogenetic and morphological evidence. The family is subdivided into two broad subfamilies, Ptychanthoideae (19 genera) and Lejeuneoideae (49 genera). Ptychanthoideae are not further subdivided whereas Lejeuneoideae are classified into three tribes: Brachiolejeuneeae (8 genera), Symbiezidieae (new; 1 genus) and Lejeuneeae (40 genera). Lejeuneeae, the largest tribe in the family, are classified into eight subtribes: Ceratolejeuneinae (2 genera), Cheilolejeuneinae (4 genera), Cololejeuneinae (12 genera), Cyclolejeuneinae (3 genera), Drepanolejeuneinae (2 genera), Echinolejeuneinae (3 genera), Lejeuneinae (5 genera) and Lepidolejeuneinae (2 genera). Seven genera of Lejeuneeae have not yet been studied by molecular methods and are not classified.


1927 ◽  
Vol 5 (2) ◽  
pp. 89-104 ◽  
Author(s):  
D. O. Morgan

The classification of the Trematode family Opisthorchiidæ presents some difficulties to the systematist. These difficulties arise partly from the fact that a number of the existing species appear to lack any real morphological characters by which they can be differentiated, slight variations in measurements, together with a difference in host, having been considered sufficient to justify the making of new species. This view has resulted in the placing of undue importance on somewhat minor differences when they do occur in other species, such differences being considered sufficient for creating new genera.The systematist is further confronted with the difficulty of forming definite opinions on the systematic position of some of the species made by earlier workers. Their descriptions and figures are often inadequate owing to the fact that characters which, in the past, were considered of minor importance are now given much closer attention. Examples of the confusion which has arisen from such a position will be referred to in this paper.


Sign in / Sign up

Export Citation Format

Share Document