Movement of mosquito vectors between permanent water storage containers: The role of urban landscape features

2016 ◽  
Author(s):  
Brendan Trewin
Author(s):  
Brendan J Trewin ◽  
Daniel E Pagendam ◽  
Myron P Zalucki ◽  
Jonathan M Darbro ◽  
Gregor J Devine ◽  
...  

Abstract Urban landscape features play an important role in the distribution and population spread of mosquito vectors. Furthermore, current insecticide and novel rear-and-release strategies for urban mosquito management rarely consider the spatial structure of the landscape when applying control practices. Here, we undertake a mark-recapture experiment to examine how urban features influence the movement and distribution of Australian container-inhabiting Aedes vectors. We pay attention to the role of semipermanent water storage containers, called rainwater tanks, and the influence of movement barriers, such as roads, on the spread and distribution of vector populations. Results suggest that Aedes aegypti (Linnaeus) (Diptera: Culicidae) were more likely to be captured around rainwater tanks, and that released males travel throughout residential blocks but do not cross roads. Conversely, female Aedes notoscriptus (Skuse) (Diptera: Culicidae) movement was uninhibited by roads and rainwater tanks did not influence female distribution or oviposition behavior. Using an isotropic Gaussian kernel framework, we show that vector movement is likely to be greater when applying a temporal effect, than when estimated by traditional methods. We conclude that a greater understanding on the role of urban features on vector movement will be important in the new age of rear-and-release mosquito control strategies, particularly those where estimations of movement are important for ensuring efficacy of application.


Author(s):  
Rebeca de Jesús Crespo ◽  
Madison Harrison ◽  
Rachel Rogers ◽  
Randy Vaeth

We investigated the role of socio-economic factors in the proliferation of mosquito vectors in two adjacent but socio-economically contrasting neighborhoods in Baton Rouge, LA, USA. We surveyed mosquito larvae habitat, mosquito larvae, and adult mosquitoes during the summer of 2020. We also evaluated the number of requests for mosquito abatement services in the years preceding the study for each area. While we did not find differences in terms of the most abundant species, Culex quinquefasicatus (F1,30 = 0.329, p = 0.57), we did find a higher abundance of mosquito habitats, particularly discarded tires, as well as larvae (z = 13.83, p < 0.001) and adults (F1,30 = 4.207, p = 0.049) of the species Aedes albopictus in the low-income neighborhood. In contrast, mosquito abatement requests were significantly higher in the high socio-economic neighborhood (z = −8.561, p < 0.001). This study shows how factors such as adjudicated properties, discarded tires and pest abatement requests can influence the abundance of mosquito vectors, disproportionately affecting low-income groups. This study also highlights how Aedes spp. may be better indicators than Culex spp. of socio-economic differences between nearby neighborhoods, due to their short flight range and habitat preferences, and this should be considered in future studies attempting to detect such disparities in the future.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Johanna Patricia Daily

ABSTRACT The most advanced vaccine against Plasmodium falciparum malaria, RTS,S/AS01, provides partial protection in infants and children living in areas of malaria endemicity. Further understanding its mechanisms of protection may allow the development of improved second-generation vaccines. The RTS,S/AS01 vaccine targets the sporozoites injected by mosquito vectors into the dermis which then travel into the blood stream to establish infection in the liver. Flores-Garcia et al. (Y. Flores-Garcia, G. Nasir, C. S. Hopp, C. Munoz, et al., mBio 9:e02194-18, 2018, https://doi.org/10.1128/mBio.02194-18) shed light on early protective responses occurring in the dermis in immunized animals. They demonstrated that immunization impairs sporozoite motility and entry into blood vessels. Furthermore, they established that challenge experiments performed using a dermal route conferred greater protection than intravenous challenge in immunized mice. Thus, the dermal challenge approach captures the additional protective mechanisms occurring in the dermis that reflect the natural physiology of infection. Those studies highlighted the fascinating biology of skin-stage sporozoites and provided additional insights into vaccine-induced protection.


2018 ◽  
Vol 13 ◽  
pp. 49-55
Author(s):  
Skirmante Mozuriunaite

Smart cities are not a new phenomenon and it is an interdisciplinary definition that became a popular labeling for modern cities. However, there a is surprisingly little academic research in urban design and planning field that discusses this phenomenon. Smart cities definition is similar to intelligent, creative, sustainable or liveable cities which appears to be considered as a part of a play with words. In most of the technological and social science articles smart cities refer to a smart urban management and development via technologies and infrastructure. Based on the scientific literature overview, there are several factors affecting the city smartness, such as technology, people and communities, economy governance, planning and infrastructure. Overall there is a little information and research on urban design principles and tools in the smart city’s creation and contribution to its smartness. The most important thing is to clarify the urban design, planning and landscape design role importance to a smart city context and vice versa. The aim of this paper is to overview the smart cities concept from urban design perspective to find and highlight the important touch points, relation and role of urban design, planning and landscape design in smart cities creation. This would lead to the robust principles for smart European cities that would enable to achieve sustainable development, efficient urban growth and a better urban landscape.


2021 ◽  
Author(s):  
Tina Trautmann ◽  
Sujan Koirala ◽  
Nuno Carvalhais ◽  
Andreas Güntner ◽  
Martin Jung

Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including vegetation on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment with vegetation parameters varying in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but including vegetation data led to even better performance and more physically plausible parameter values. Largest improvements regarding TWS and ET were seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of snow and different soil water storage components to the TWS variations, with the dominance of an intermediate water pool that interacts with the fast plant accessible soil moisture and the delayed water storage. The findings indicate the important role of deeper moisture storages as well as groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.


Author(s):  
Kristine Peta Jerome

This chapter explores the role of the built environment in the creation, cultivation and acquisition of a knowledge base by people populating the urban landscape. It examines McDonald’s restaurants as a way to comprehend the relevance of the physical design in the diffusion of codified and tacit knowledge at an everyday level. Through an examination of space at a localised level, this chapter describes the synergies of space and the significance of this relationship in navigating the global landscape.


Sign in / Sign up

Export Citation Format

Share Document