scholarly journals Exploiting Class Learnability in Noisy Data

Author(s):  
Matthew Klawonn ◽  
Eric Heim ◽  
James Hendler

In many domains, collecting sufficient labeled training data for supervised machine learning requires easily accessible but noisy sources, such as crowdsourcing services or tagged Web data. Noisy labels occur frequently in data sets harvested via these means, sometimes resulting in entire classes of data on which learned classifiers generalize poorly. For real world applications, we argue that it can be beneficial to avoid training on such classes entirely. In this work, we aim to explore the classes in a given data set, and guide supervised training to spend time on a class proportional to its learnability. By focusing the training process, we aim to improve model generalization on classes with a strong signal. To that end, we develop an online algorithm that works in conjunction with classifier and training algorithm, iteratively selecting training data for the classifier based on how well it appears to generalize on each class. Testing our approach on a variety of data sets, we show our algorithm learns to focus on classes for which the model has low generalization error relative to strong baselines, yielding a classifier with good performance on learnable classes.

2021 ◽  
Vol 11 (2) ◽  
pp. 98-102
Author(s):  
A. C. M. Fong ◽  
◽  
G. Hong

Traditionally, supervised machine learning (ML) algorithms rely heavily on large sets of annotated data. This is especially true for deep learning (DL) neural networks, which need huge annotated data sets for good performance. However, large volumes of annotated data are not always readily available. In addition, some of the best performing ML and DL algorithms lack explainability – it is often difficult even for domain experts to interpret the results. This is an important consideration especially in safety-critical applications, such as AI-assisted medical endeavors, in which a DL’s failure mode is not well understood. This lack of explainability also increases the risk of malicious attacks by adversarial actors because these actions can become obscured in the decision-making process that lacks transparency. This paper describes an intensional learning approach which uses boosting to enhance prediction performance while minimizing reliance on availability of annotated data. The intensional information is derived from an unsupervised learning preprocessing step involving clustering. Preliminary evaluation on the MNIST data set has shown encouraging results. Specifically, using the proposed approach, it is now possible to achieve similar accuracy result as extensional learning alone while using only a small fraction of the original training data set.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
R Haneef ◽  
S Fuentes ◽  
R Hrzic ◽  
S Fosse-Edorh ◽  
S Kab ◽  
...  

Abstract Background The use of artificial intelligence is increasing to estimate and predict health outcomes from large data sets. The main objectives were to develop two algorithms using machine learning techniques to identify new cases of diabetes (case study I) and to classify type 1 and type 2 (case study II) in France. Methods We selected the training data set from a cohort study linked with French national Health database (i.e., SNDS). Two final datasets were used to achieve each objective. A supervised machine learning method including eight following steps was developed: the selection of the data set, case definition, coding and standardization of variables, split data into training and test data sets, variable selection, training, validation and selection of the model. We planned to apply the trained models on the SNDS to estimate the incidence of diabetes and the prevalence of type 1/2 diabetes. Results For the case study I, 23/3468 and for case study II, 14/3481 SNDS variables were selected based on an optimal balance between variance explained and using the ReliefExp algorithm. We trained four models using different classification algorithms on the training data set. The Linear Discriminant Analysis model performed best in both case studies. The models were assessed on the test datasets and achieved a specificity of 67% and a sensitivity of 62% in case study I, and a specificity of 97 % and sensitivity of 100% in case study II. The case study II model was applied to the SNDS and estimated the prevalence of type 1 diabetes in 2016 in France of 0.3% and for type 2, 4.4%. The case study model I was not applied to the SNDS. Conclusions The case study II model to estimate the prevalence of type 1/2 diabetes has good performance and will be used in routine surveillance. The case study I model to identify new cases of diabetes showed a poor performance due to missing necessary information on determinants of diabetes and will need to be improved for further research.


2019 ◽  
Vol 8 (4) ◽  
pp. 8797-8801

In this we explore the effectiveness of language features to identify Twitter messages ' feelings. We assess the utility of existing lexical tools as well as capturing features of informal and innovative language knowledge used in micro blogging. We take a supervised approach to the problem, but to create training data, we use existing hash tags in the Twitter data. We Using three separate Twitter messaging companies in our experiments. We use the hash tagged data set (HASH) for development and training, which we compile from the Edinburgh Twitter corpus, and the emoticon data set (EMOT) from the I Sieve Corporation (ISIEVE) for evaluation. Twitter contains huge amount of data . This data may be of different types such as structured data or unstructured data. So by using this data and Appling pre processing techniques we can be able to read the comments from the users. And also the comments will be classified into three categories. They are positive negative and also the neutral comments.Today they use the processing of natural language, information, and text interpretation to derive and classify text feeling into pos itive, negative, and neutral categories. We can also examine the utility of language features to identify Twitter mess ages ' feelings. In addition, state-of - the-art approaches take into consideration only the tweet to be classified when classifying the feeling; they ignore its context (i.e. related tweets).Since tweets are usually short and more ambiguous, however, it is sometimes not enough to consider only the current tweet for classification of sentiments.Informal and innovative microblogging language. We take a sup ervised approach to the problem, but to create training data, we use existing hashtags in the Twitter data.This paper also contrasts sentiment analysis approaches in evaluating political views using Naïve Bayes supervised machine learning algorithm which performs in better analysis compared to other techniques Paper


2019 ◽  
Vol 12 (2) ◽  
pp. 120-127 ◽  
Author(s):  
Wael Farag

Background: In this paper, a Convolutional Neural Network (CNN) to learn safe driving behavior and smooth steering manoeuvring, is proposed as an empowerment of autonomous driving technologies. The training data is collected from a front-facing camera and the steering commands issued by an experienced driver driving in traffic as well as urban roads. Methods: This data is then used to train the proposed CNN to facilitate what it is called “Behavioral Cloning”. The proposed Behavior Cloning CNN is named as “BCNet”, and its deep seventeen-layer architecture has been selected after extensive trials. The BCNet got trained using Adam’s optimization algorithm as a variant of the Stochastic Gradient Descent (SGD) technique. Results: The paper goes through the development and training process in details and shows the image processing pipeline harnessed in the development. Conclusion: The proposed approach proved successful in cloning the driving behavior embedded in the training data set after extensive simulations.


2021 ◽  
Author(s):  
Louise Bloch ◽  
Christoph M. Friedrich

Abstract Background: The prediction of whether Mild Cognitive Impaired (MCI) subjects will prospectively develop Alzheimer's Disease (AD) is important for the recruitment and monitoring of subjects for therapy studies. Machine Learning (ML) is suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to noisy data sets. Additional noise is introduced by multicentric study designs and varying acquisition protocols. This article examines whether an automatic and fair data valuation method based on Shapley values can identify subjects with noisy data. Methods: An ML-workow was developed and trained for a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The validation was executed for an independent ADNI test data set and for the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) cohort. The workow included volumetric Magnetic Resonance Imaging (MRI) feature extraction, subject sample selection using data Shapley, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) for model training and Kernel SHapley Additive exPlanations (SHAP) values for model interpretation. This model interpretation enables clinically relevant explanation of individual predictions. Results: The XGBoost models which excluded 116 of the 467 subjects from the training data set based on their Logistic Regression (LR) data Shapley values outperformed the models which were trained on the entire training data set and which reached a mean classification accuracy of 58.54 % by 14.13 % (8.27 percentage points) on the independent ADNI test data set. The XGBoost models, which were trained on the entire training data set reached a mean accuracy of 60.35 % for the AIBL data set. An improvement of 24.86 % (15.00 percentage points) could be reached for the XGBoost models if those 72 subjects with the smallest RF data Shapley values were excluded from the training data set. Conclusion: The data Shapley method was able to improve the classification accuracies for the test data sets. Noisy data was associated with the number of ApoEϵ4 alleles and volumetric MRI measurements. Kernel SHAP showed that the black-box models learned biologically plausible associations.


2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


2021 ◽  
pp. 1-17
Author(s):  
Luis Sa-Couto ◽  
Andreas Wichert

Abstract Convolutional neural networks (CNNs) evolved from Fukushima's neocognitron model, which is based on the ideas of Hubel and Wiesel about the early stages of the visual cortex. Unlike other branches of neocognitron-based models, the typical CNN is based on end-to-end supervised learning by backpropagation and removes the focus from built-in invariance mechanisms, using pooling not as a way to tolerate small shifts but as a regularization tool that decreases model complexity. These properties of end-to-end supervision and flexibility of structure allow the typical CNN to become highly tuned to the training data, leading to extremely high accuracies on typical visual pattern recognition data sets. However, in this work, we hypothesize that there is a flip side to this capability, a hidden overfitting. More concretely, a supervised, backpropagation based CNN will outperform a neocognitron/map transformation cascade (MTCCXC) when trained and tested inside the same data set. Yet if we take both models trained and test them on the same task but on another data set (without retraining), the overfitting appears. Other neocognitron descendants like the What-Where model go in a different direction. In these models, learning remains unsupervised, but more structure is added to capture invariance to typical changes. Knowing that, we further hypothesize that if we repeat the same experiments with this model, the lack of supervision may make it worse than the typical CNN inside the same data set, but the added structure will make it generalize even better to another one. To put our hypothesis to the test, we choose the simple task of handwritten digit classification and take two well-known data sets of it: MNIST and ETL-1. To try to make the two data sets as similar as possible, we experiment with several types of preprocessing. However, regardless of the type in question, the results align exactly with expectation.


2020 ◽  
Author(s):  
Tianyu Xu ◽  
Yongchuan Yu ◽  
Jianzhuo Yan ◽  
Hongxia Xu

Abstract Due to the problems of unbalanced data sets and distribution differences in long-term rainfall prediction, the current rainfall prediction model had poor generalization performance and could not achieve good prediction results in real scenarios. This study uses multiple atmospheric parameters (such as temperature, humidity, atmospheric pressure, etc.) to establish a TabNet-LightGbm rainfall probability prediction model. This research uses feature engineering (such as generating descriptive statistical features, feature fusion) to improve model accuracy, Borderline Smote algorithm to improve data set imbalance, and confrontation verification to improve distribution differences. The experiment uses 5 years of precipitation data from 26 stations in the Beijing-Tianjin-Hebei region of China to verify the proposed rainfall prediction model. The test set is to predict the rainfall of each station in one month. The experimental results shows that the model has good performance with AUC larger than 92%. The method proposed in this study further improves the accuracy of rainfall prediction, and provides a reference for data mining tasks.


Sign in / Sign up

Export Citation Format

Share Document