scholarly journals Multi-Source Domain Adaptation for Visual Sentiment Classification

2020 ◽  
Vol 34 (03) ◽  
pp. 2661-2668
Author(s):  
Chuang Lin ◽  
Sicheng Zhao ◽  
Lei Meng ◽  
Tat-Seng Chua

Existing domain adaptation methods on visual sentiment classification typically are investigated under the single-source scenario, where the knowledge learned from a source domain of sufficient labeled data is transferred to the target domain of loosely labeled or unlabeled data. However, in practice, data from a single source domain usually have a limited volume and can hardly cover the characteristics of the target domain. In this paper, we propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN), for visual sentiment classification. To handle data from multiple source domains, it learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution. This is achieved via cycle consistent adversarial learning in an end-to-end manner. Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.

2019 ◽  
Vol 11 (22) ◽  
pp. 2631 ◽  
Author(s):  
Bo Fang ◽  
Rong Kou ◽  
Li Pan ◽  
Pengfei Chen

Since manually labeling aerial images for pixel-level classification is expensive and time-consuming, developing strategies for land cover mapping without reference labels is essential and meaningful. As an efficient solution for this issue, domain adaptation has been widely utilized in numerous semantic labeling-based applications. However, current approaches generally pursue the marginal distribution alignment between the source and target features and ignore the category-level alignment. Therefore, directly applying them to land cover mapping leads to unsatisfactory performance in the target domain. In our research, to address this problem, we embed a geometry-consistent generative adversarial network (GcGAN) into a co-training adversarial learning network (CtALN), and then develop a category-sensitive domain adaptation (CsDA) method for land cover mapping using very-high-resolution (VHR) optical aerial images. The GcGAN aims to eliminate the domain discrepancies between labeled and unlabeled images while retaining their intrinsic land cover information by translating the features of the labeled images from the source domain to the target domain. Meanwhile, the CtALN aims to learn a semantic labeling model in the target domain with the translated features and corresponding reference labels. By training this hybrid framework, our method learns to distill knowledge from the source domain and transfers it to the target domain, while preserving not only global domain consistency, but also category-level consistency between labeled and unlabeled images in the feature space. The experimental results between two airborne benchmark datasets and the comparison with other state-of-the-art methods verify the robustness and superiority of our proposed CsDA.


Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


Author(s):  
Yonghao Xu ◽  
Bo Du ◽  
Lefei Zhang ◽  
Qian Zhang ◽  
Guoli Wang ◽  
...  

Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.


2020 ◽  
Vol 34 (07) ◽  
pp. 11515-11522
Author(s):  
Kaiyi Lin ◽  
Xing Xu ◽  
Lianli Gao ◽  
Zheng Wang ◽  
Heng Tao Shen

Zero-Shot Cross-Modal Retrieval (ZS-CMR) is an emerging research hotspot that aims to retrieve data of new classes across different modality data. It is challenging for not only the heterogeneous distributions across different modalities, but also the inconsistent semantics across seen and unseen classes. A handful of recently proposed methods typically borrow the idea from zero-shot learning, i.e., exploiting word embeddings of class labels (i.e., class-embeddings) as common semantic space, and using generative adversarial network (GAN) to capture the underlying multimodal data structures, as well as strengthen relations between input data and semantic space to generalize across seen and unseen classes. In this paper, we propose a novel method termed Learning Cross-Aligned Latent Embeddings (LCALE) as an alternative to these GAN based methods for ZS-CMR. Unlike using the class-embeddings as the semantic space, our method seeks for a shared low-dimensional latent space of input multimodal features and class-embeddings by modality-specific variational autoencoders. Notably, we align the distributions learned from multimodal input features and from class-embeddings to construct latent embeddings that contain the essential cross-modal correlation associated with unseen classes. Effective cross-reconstruction and cross-alignment criterions are further developed to preserve class-discriminative information in latent space, which benefits the efficiency for retrieval and enable the knowledge transfer to unseen classes. We evaluate our model using four benchmark datasets on image-text retrieval tasks and one large-scale dataset on image-sketch retrieval tasks. The experimental results show that our method establishes the new state-of-the-art performance for both tasks on all datasets.


2020 ◽  
Vol 10 (23) ◽  
pp. 8415
Author(s):  
Jeongmin Lee ◽  
Younkyoung Yoon ◽  
Junseok Kwon

We propose a novel generative adversarial network for class-conditional data augmentation (i.e., GANDA) to mitigate data imbalance problems in image classification tasks. The proposed GANDA generates minority class data by exploiting majority class information to enhance the classification accuracy of minority classes. For stable GAN training, we introduce a new denoising autoencoder initialization with explicit class conditioning in the latent space, which enables the generation of definite samples. The generated samples are visually realistic and have a high resolution. Experimental results demonstrate that the proposed GANDA can considerably improve classification accuracy, especially when datasets are highly imbalanced on standard benchmark datasets (i.e., MNIST and CelebA). Our generated samples can be easily used to train conventional classifiers to enhance their classification accuracy.


Author(s):  
A. Paul ◽  
K. Vogt ◽  
F. Rottensteiner ◽  
J. Ostermann ◽  
C. Heipke

In this paper we deal with the problem of measuring the similarity between training and tests datasets in the context of transfer learning (TL) for image classification. TL tries to transfer knowledge from a source domain, where labelled training samples are abundant but the data may follow a different distribution, to a target domain, where labelled training samples are scarce or even unavailable, assuming that the domains are related. Thus, the requirements w.r.t. the availability of labelled training samples in the target domain are reduced. In particular, if no labelled target data are available, it is inherently difficult to find a robust measure of relatedness between the source and target domains. This is of crucial importance for the performance of TL, because the knowledge transfer between unrelated data may lead to negative transfer, i.e. to a decrease of classification performance after transfer. We address the problem of measuring the relatedness between source and target datasets and investigate three different strategies to predict and, consequently, to avoid negative transfer in this paper. The first strategy is based on circular validation. The second strategy relies on the Maximum Mean Discrepancy (MMD) similarity metric, whereas the third one is an extension of MMD which incorporates the knowledge about the class labels in the source domain. Our method is evaluated using two different benchmark datasets. The experiments highlight the strengths and weaknesses of the investigated methods. We also show that it is possible to reduce the amount of negative transfer using these strategies for a TL method and to generate a consistent performance improvement over the whole dataset.


2021 ◽  
Author(s):  
Marlen Runz ◽  
Daniel Rusche ◽  
Martin R Weihrauch ◽  
Jürgen Hesser ◽  
Cleo-Aron Weis

Abstract Background: Histological images show huge variance (e.g. illumination, color, staining quality) due to differences in image acquisition, tissue processing, staining, etc. The variance can impede many image analyzes such as staining intensity evaluation or classification. Methods to reduce these variances are gathered under the term image normalization. Methods: We present the application of CylceGAN - a cycle consistent Generative Adversarial Network for color normalization in hematoxylin-eosin stained histological images using typical clinical data including variability of internal staining. The network consists of a generator network GB that learns to map an image X from a source domain A to a target domain B, i.e. GB : XA → XB. In addition, a discriminator network DB is trained to distinguish whether an image from domain B is an original or generated one. The same process is applied to another generator-discriminator pair (GA, DA), for the inverse mapping GA : XB → XA. Cycle consistency ensures that the generated image is close to the original image when being mapped backwards (GA(GB(XA)) ≈ XA and vice versa). We validate the CycleGAN approach on a breast cancer challenge and a follicular thyroid carcinoma dataset for various stain variations. We evaluate the quality of the generated images compared to the original images using similarity measures. Results: We present qualitative results of the images generated by our network compared to the original color distributions. Our evaluation shows that by mapping images from a source domain to a target domain, the similarity to original images from the target domain improve up to 96%. We also achieve a high cycle consistency for the inverse mapping by obtaining similarity indices bigger than 0.9. Conclusions: CycleGANs have proven to efficiently normalize HE-stained images. The approach enables to compensate for deviations resulting from image acquisition (e.g. different scanning devices) as well as from tissue staining (e.g. different staining protocols), and thus overcomes the staining variations in images from various institutions. The code is publicly available at https://github.com/m4ln/stainTransfer_CycleGAN_pytorch. The dataset supporting the solutions is available at https://heidata.uni-heidelberg. de/privateurl.xhtml?token=12493b50-1538-4bdf-aca5-03352a1399a8.


Author(s):  
Yiyang Zhang ◽  
Feng Liu ◽  
Zhen Fang ◽  
Bo Yuan ◽  
Guangquan Zhang ◽  
...  

In unsupervised domain adaptation (UDA), classifiers for the target domain are trained with massive true-label data from the source domain and unlabeled data from the target domain. However, it may be difficult to collect fully-true-label data in a source domain given limited budget. To mitigate this problem, we consider a novel problem setting where the classifier for the target domain has to be trained with complementary-label data from the source domain and unlabeled data from the target domain named budget-friendly UDA (BFUDA). The key benefit is that it is much less costly to collect complementary-label source data (required by BFUDA) than collecting the true-label source data (required by ordinary UDA). To this end, complementary label adversarial network (CLARINET) is proposed to solve the BFUDA problem. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of the source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines.


Author(s):  
Kaizhong Jin ◽  
Xiang Cheng ◽  
Jiaxi Yang ◽  
Kaiyuan Shen

Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. As a simple and efficient method for domain adaptation, correlation alignment transforms the distribution of the source domain by utilizing the covariance matrix of the target domain, such that a model trained on the transformed source data can be applied to the target data. However, when source and target domains come from different institutes, exchanging information between the two domains might pose a potential privacy risk. In this paper, for the first time, we propose a differentially private correlation alignment approach for domain adaptation called PRIMA, which can provide privacy guarantees for both the source and target data. In PRIMA, to relieve the performance degradation caused by perturbing the covariance matrix in high dimensional setting, we present a random subspace ensemble based covariance estimation method which splits the feature spaces of source and target data into several low dimensional subspaces. Moreover, since perturbing the covariance matrix may destroy its positive semi-definiteness, we develop a shrinking based method for the recovery of positive semi-definiteness of the covariance matrix. Experimental results on standard benchmark datasets confirm the effectiveness of our approach.


2021 ◽  
Vol 12 (1) ◽  
pp. 288
Author(s):  
Tasleem Kausar ◽  
Adeeba Kausar ◽  
Muhammad Adnan Ashraf ◽  
Muhammad Farhan Siddique ◽  
Mingjiang Wang ◽  
...  

Histopathological image analysis is an examination of tissue under a light microscope for cancerous disease diagnosis. Computer-assisted diagnosis (CAD) systems work well by diagnosing cancer from histopathology images. However, stain variability in histopathology images is inevitable due to the use of different staining processes, operator ability, and scanner specifications. These stain variations present in histopathology images affect the accuracy of the CAD systems. Various stain normalization techniques have been developed to cope with inter-variability issues, allowing standardizing the appearance of images. However, in stain normalization, these methods rely on the single reference image rather than incorporate color distributions of the entire dataset. In this paper, we design a novel machine learning-based model that takes advantage of whole dataset distributions as well as color statistics of a single target image instead of relying only on a single target image. The proposed deep model, called stain acclimation generative adversarial network (SA-GAN), consists of one generator and two discriminators. The generator maps the input images from the source domain to the target domain. Among discriminators, the first discriminator forces the generated images to maintain the color patterns as of target domain. While second discriminator forces the generated images to preserve the structure contents as of source domain. The proposed model is trained using a color attribute metric, extracted from a selected template image. Therefore, the designed model not only learns dataset-specific staining properties but also image-specific textural contents. Evaluated results on four different histopathology datasets show the efficacy of SA-GAN to acclimate stain contents and enhance the quality of normalization by obtaining the highest values of performance metrics. Additionally, the proposed method is also evaluated for multiclass cancer type classification task, showing a 6.9% improvement in accuracy on ICIAR 2018 hidden test data.


Sign in / Sign up

Export Citation Format

Share Document