scholarly journals Observe Before Play: Multi-Armed Bandit with Pre-Observations

2020 ◽  
Vol 34 (04) ◽  
pp. 7023-7030
Author(s):  
Jinhang Zuo ◽  
Xiaoxi Zhang ◽  
Carlee Joe-Wong

We consider the stochastic multi-armed bandit (MAB) problem in a setting where a player can pay to pre-observe arm rewards before playing an arm in each round. Apart from the usual trade-off between exploring new arms to find the best one and exploiting the arm believed to offer the highest reward, we encounter an additional dilemma: pre-observing more arms gives a higher chance to play the best one, but incurs a larger cost. For the single-player setting, we design an Observe-Before-Play Upper Confidence Bound (OBP-UCB) algorithm for K arms with Bernoulli rewards, and prove a T-round regret upper bound O(K2log T). In the multi-player setting, collisions will occur when players select the same arm to play in the same round. We design a centralized algorithm, C-MP-OBP, and prove its T-round regret relative to an offline greedy strategy is upper bounded in O(K4/M2log T) for K arms and M players. We also propose distributed versions of the C-MP-OBP policy, called D-MP-OBP and D-MP-Adapt-OBP, achieving logarithmic regret with respect to collision-free target policies. Experiments on synthetic data and wireless channel traces show that C-MP-OBP and D-MP-OBP outperform random heuristics and offline optimal policies that do not allow pre-observations.

Author(s):  
Xueying Guo ◽  
Xiaoxiao Wang ◽  
Xin Liu

In this paper, we propose and study opportunistic contextual bandits - a special case of contextual bandits where the exploration cost varies under different environmental conditions, such as network load or return variation in recommendations. When the exploration cost is low, so is the actual regret of pulling a sub-optimal arm (e.g., trying a suboptimal recommendation). Therefore, intuitively, we could explore more when the exploration cost is relatively low and exploit more when the exploration cost is relatively high. Inspired by this intuition, for opportunistic contextual bandits with Linear payoffs, we propose an Adaptive Upper-Confidence-Bound algorithm (AdaLinUCB) to adaptively balance the exploration-exploitation trade-off for opportunistic learning. We prove that AdaLinUCB achieves O((log T)^2) problem-dependent regret upper bound, which has a smaller coefficient than that of the traditional LinUCB algorithm. Moreover, based on both synthetic and real-world dataset, we show that AdaLinUCB significantly outperforms other contextual bandit algorithms, under large exploration cost fluctuations.


Author(s):  
Julian Berk ◽  
Sunil Gupta ◽  
Santu Rana ◽  
Svetha Venkatesh

In order to improve the performance of Bayesian optimisation, we develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function. This is done by sampling the exploration-exploitation trade-off parameter from a distribution. We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret. We also provide results showing that our method achieves better performance than GP-UCB in a range of real-world and synthetic problems.


Author(s):  
Yi-Qi Hu ◽  
Yang Yu ◽  
Jun-Da Liao

An automatic machine learning (AutoML) task is to select the best algorithm and its hyper-parameters simultaneously. Previously, the hyper-parameters of all algorithms are joint as a single search space, which is not only huge but also redundant, because many dimensions of hyper-parameters are irrelevant with the selected algorithms. In this paper, we propose a cascaded approach for algorithm selection and hyper-parameter optimization. While a search procedure is employed at the level of hyper-parameter optimization, a bandit strategy runs at the level of algorithm selection to allocate the budget based on the search feedbacks. Since the bandit is required to select the algorithm with the maximum performance, instead of the average performance, we thus propose the extreme-region upper confidence bound (ER-UCB) strategy, which focuses on the extreme region of the underlying feedback distribution. We show theoretically that the ER-UCB has a regret upper bound O(K ln n) with independent feedbacks, which is as efficient as the classical UCB bandit. We also conduct experiments on a synthetic problem as well as a set of AutoML tasks. The results verify the effectiveness of the proposed method.


Author(s):  
Mark Burgess

Upper confidence bound multi-armed bandit algorithms (UCB) typically rely on concentration in- equalities (such as Hoeffding’s inequality) for the creation of the upper confidence bound. Intu- itively, the tighter the bound is, the more likely the respective arm is or isn’t judged appropriately for selection. Hence we derive and utilise an optimal inequality. Usually the sample mean (and sometimes the sample variance) of previous rewards are the information which are used in the bounds which drive the algorithm, but intuitively the more infor- mation that taken from the previous rewards, the tighter the bound could be. Hence our inequality explicitly considers the values of each and every past reward into the upper bound expression which drives the method. We show how this UCB method fits into the broader scope of other information theoretic UCB algorithms, but unlike them is free from assumptions about the distribution of the data, We conclude by reporting some already established regret information, and give some numerical simulations to demonstrate the method’s effectiveness.


2019 ◽  
Vol 9 (20) ◽  
pp. 4303 ◽  
Author(s):  
Jaroslav Melesko ◽  
Vitalij Novickij

There is strong support for formative assessment inclusion in learning processes, with the main emphasis on corrective feedback for students. However, traditional testing and Computer Adaptive Testing can be problematic to implement in the classroom. Paper based tests are logistically inconvenient and are hard to personalize, and thus must be longer to accurately assess every student in the classroom. Computer Adaptive Testing can mitigate these problems by making use of Multi-Dimensional Item Response Theory at cost of introducing several new problems, most problematic of which are the greater test creation complexity, because of the necessity of question pool calibration, and the debatable premise that different questions measure one common latent trait. In this paper a new approach of modelling formative assessment as a Multi-Armed bandit problem is proposed and solved using Upper-Confidence Bound algorithm. The method in combination with e-learning paradigm has the potential to mitigate such problems as question item calibration and lengthy tests, while providing accurate formative assessment feedback for students. A number of simulation and empirical data experiments (with 104 students) are carried out to explore and measure the potential of this application with positive results.


Author(s):  
Pulak Sarkar ◽  
Solagna Modak ◽  
Santanu Ray ◽  
Vasista Adupa ◽  
K. Anki Reddy ◽  
...  

Liquid transport through the composite membrane is inversely proportional to the thickness of its separation layer. While the scalable fabrication of ultrathin polymer membranes is sought for their commercial exploitation,...


2021 ◽  
pp. 100208
Author(s):  
Mohammed Alshahrani ◽  
Fuxi Zhu ◽  
Soufiana Mekouar ◽  
Mohammed Yahya Alghamdi ◽  
Shichao Liu

2014 ◽  
Vol 12 (7) ◽  
pp. 3689-3696 ◽  
Author(s):  
Khosrow Amirizadeh ◽  
Rajeswari Mandava

Accelerated multi-armed bandit (MAB) model in Reinforcement-Learning for on-line sequential selection problems is presented. This iterative model utilizes an automatic step size calculation that improves the performance of MAB algorithm under different conditions such as, variable variance of reward and larger set of usable actions. As result of these modifications, number of optimal selections will be maximized and stability of the algorithm under mentioned conditions may be amplified. This adaptive model with automatic step size computation may attractive for on-line applications in which,  variance of observations vary with time and re-tuning their step size are unavoidable where, this re-tuning is not a simple task. The proposed model governed by upper confidence bound (UCB) approach in iterative form with automatic step size computation. It called adaptive UCB (AUCB) that may use in industrial robotics, autonomous control and intelligent selection or prediction tasks in the economical engineering applications under lack of information.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Chien-Hung Chien ◽  
Alan Hepburn Welsh ◽  
John D Moore

Enhancing microdata access is one of the strategic priorities for the Australian Bureau of Statistics (ABS) in its transformation program. However, balancing the trade-off between enhancing data access and protecting confidentiality is a delicate act. The ABS could use synthetic data to make its business microdata more accessible for researchers to inform decision making while maintaining confidentiality. This study explores the synthetic data approach for the release and analysis of business data. Australian businesses in some industries are characterised by oligopoly or duopoly. This means the existing microdata protection techniques such as information reduction or perturbation may not be as effective as for household microdata. The research focuses on addressing the following questions: Can a synthetic data approach enhance microdata access for the longitudinal business data? What is the utility and protection trade-off using the synthetic data approach? The study compares confidentialised input and output approaches for protecting confidentiality and analysing Australian microdata from business survey or administrative data sources.


Sign in / Sign up

Export Citation Format

Share Document