scholarly journals CF-LSTM: Cascaded Feature-Based Long Short-Term Networks for Predicting Pedestrian Trajectory

2020 ◽  
Vol 34 (07) ◽  
pp. 12541-12548
Author(s):  
Yi Xu ◽  
Jing Yang ◽  
Shaoyi Du

Pedestrian trajectory prediction is an important but difficult task in self-driving or autonomous mobile robot field because there are complex unpredictable human-human interactions in crowded scenarios. There have been a large number of studies that attempt to understand humans' social behavior. However, most of these studies extract location features from previous one time step while neglecting the vital velocity features. In order to address this issue, we propose a novel feature-cascaded framework for long short-term network (CF-LSTM) without extra artificial settings or social rules. In this framework, feature information from previous two time steps are firstly extracted and then integrated as a cascaded feature to LSTM, which is able to capture the previous location information and dynamic velocity information, simultaneously. In addition, this scene-agnostic cascaded feature is the external manifestation of complex human-human interactions, which can also effectively capture dynamic interaction information in different scenes without any other pedestrians' information. Experiments on public benchmark datasets indicate that our model achieves better performance than the state-of-the-art methods and this feature-cascaded framework has the ability to implicitly learn human-human interactions.

Author(s):  
Lei Lin ◽  
Siyuan Gong ◽  
Srinivas Peeta ◽  
Xia Wu

The advent of connected and autonomous vehicles (CAVs) will change driving behavior and travel environment, and provide opportunities for safer, smoother, and smarter road transportation. During the transition from the current human-driven vehicles (HDVs) to a fully CAV traffic environment, the road traffic will consist of a “mixed” traffic flow of HDVs and CAVs. Equipped with multiple sensors and vehicle-to-vehicle communications, a CAV can track surrounding HDVs and receive trajectory data of other CAVs in communication range. These trajectory data can be leveraged with recent advances in deep learning methods to potentially predict the trajectories of a target HDV. Based on these predictions, CAVs can react to circumvent or mitigate traffic flow oscillations and accidents. This study develops attention-based long short-term memory (LSTM) models for HDV longitudinal trajectory prediction in a mixed flow environment. The model and a few other LSTM variants are tested on the Next Generation Simulation US 101 dataset with different CAV market penetration rates (MPRs). Results illustrate that LSTM models that utilize historical trajectories from surrounding CAVs perform much better than those that ignore information even when the MPR is as low as 0.2. The attention-based LSTM models can provide more accurate multi-step longitudinal trajectory predictions. Further, grid-level average attention weight analysis is conducted and the CAVs with higher impact on the target HDV’s future trajectories are identified.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3517 ◽  
Author(s):  
Anh Ngoc-Lan Huynh ◽  
Ravinesh C. Deo ◽  
Duc-Anh An-Vo ◽  
Mumtaz Ali ◽  
Nawin Raj ◽  
...  

This paper aims to develop the long short-term memory (LSTM) network modelling strategy based on deep learning principles, tailored for the very short-term, near-real-time global solar radiation (GSR) forecasting. To build the prescribed LSTM model, the partial autocorrelation function is applied to the high resolution, 1 min scaled solar radiation dataset that generates statistically significant lagged predictor variables describing the antecedent behaviour of GSR. The LSTM algorithm is adopted to capture the short- and the long-term dependencies within the GSR data series patterns to accurately predict the future GSR at 1, 5, 10, 15, and 30 min forecasting horizons. This objective model is benchmarked at a solar energy resource rich study site (Bac-Ninh, Vietnam) against the competing counterpart methods employing other deep learning, a statistical model, a single hidden layer and a machine learning-based model. The LSTM model generates satisfactory predictions at multiple-time step horizons, achieving a correlation coefficient exceeding 0.90, outperforming all of the counterparts. In accordance with robust statistical metrics and visual analysis of all tested data, the study ascertains the practicality of the proposed LSTM approach to generate reliable GSR forecasts. The Diebold–Mariano statistic test also shows LSTM outperforms the counterparts in most cases. The study confirms the practical utility of LSTM in renewable energy studies, and broadly in energy-monitoring devices tailored for other energy variables (e.g., hydro and wind energy).


Author(s):  
Meyer Nahon

Abstract The rapid determination of the minimum distance between objects is of importance in collision avoidance for a robot maneuvering among obstacles. Currently, the fastest algorithms for the solution of this problem are based on the use of optimization techniques to minimize a distance function. Furthermore, to date this problem has been approached purely through the position kinematics of the two objects. However, although the minimum distance between two objects can be found quickly on state-of-the-art hardware, the modelling of realistic scenes entails the determination of the minimum distances between large numbers of pairs of objects, and the computation time to calculate the overall minimum distance between any two objects is significant, and introduces a delay which has serious repercussions on the real-time control of the robot. This paper presents a technique to modify the original optimization problem in order to include velocity information. In effect, the minimum distance calculation is performed at a future time step by projecting the effect of present velocity. This method has proven to give good results on a 6-dof robot maneuvering among obstacles, and has allowed a complete compensation of the lags incurred due to computational delays.


2018 ◽  
Vol 10 (6) ◽  
pp. 964 ◽  
Author(s):  
Zhenfeng Shao ◽  
Ke Yang ◽  
Weixun Zhou

Benchmark datasets are essential for developing and evaluating remote sensing image retrieval (RSIR) approaches. However, most of the existing datasets are single-labeled, with each image in these datasets being annotated by a single label representing the most significant semantic content of the image. This is sufficient for simple problems, such as distinguishing between a building and a beach, but multiple labels and sometimes even dense (pixel) labels are required for more complex problems, such as RSIR and semantic segmentation.We therefore extended the existing multi-labeled dataset collected for multi-label RSIR and presented a dense labeling remote sensing dataset termed "DLRSD". DLRSD contained a total of 17 classes, and the pixels of each image were assigned with 17 pre-defined labels. We used DLRSD to evaluate the performance of RSIR methods ranging from traditional handcrafted feature-based methods to deep learning-based ones. More specifically, we evaluated the performances of RSIR methods from both single-label and multi-label perspectives. These results demonstrated the advantages of multiple labels over single labels for interpreting complex remote sensing images. DLRSD provided the literature a benchmark for RSIR and other pixel-based problems such as semantic segmentation.


Author(s):  
Md. Asifuzzaman Jishan ◽  
Khan Raqib Mahmud ◽  
Abul Kalam Al Azad

We presented a learning model that generated natural language description of images. The model utilized the connections between natural language and visual data by produced text line based contents from a given image. Our Hybrid Recurrent Neural Network model is based on the intricacies of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Bi-directional Recurrent Neural Network (BRNN) models. We conducted experiments on three benchmark datasets, e.g., Flickr8K, Flickr30K, and MS COCO. Our hybrid model utilized LSTM model to encode text line or sentences independent of the object location and BRNN for word representation, this reduced the computational complexities without compromising the accuracy of the descriptor. The model produced better accuracy in retrieving natural language based description on the dataset.


2021 ◽  
Author(s):  
Xing Xu ◽  
Chengxing Liu ◽  
Yun Zhao ◽  
Xuyang Yu ◽  
Xiang Wu

Abstract In order to tackle existing traffic flow prediction problem, a Traffic Volume Forecast Model based on deep learning is designed. The model implements Convolutional Neural Network (CNN) to extract spatial matrix information, uses long and short-term neural network (LSTM) for sequence prediction, appends attention mechanism to time step on LSTM, and assigns weights to different time steps. By implementing model verification on the Chengdu taxi dataset, dividing data into various categories, cross validating different categories of data, and comparing the model with other models, it is concluded that the CNN-LSTM-At network model proposed in this article has higher accuracy compared with traditional network model.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 258 ◽  
Author(s):  
Yecheng Yao ◽  
Jungho Yi ◽  
Shengjun Zhai ◽  
Yuwen Lin ◽  
Taekseung Kim ◽  
...  

The decentralization of cryptocurrencies has greatly reduced the level of central control over them, impacting international relations and trade. Further, wide fluctuations in cryptocurrency price indicate an urgent need for an accurate way to forecast this price. This paper proposes a novel method to predict cryptocurrency price by considering various factors such as market cap, volume, circulating supply, and maximum supply based on deep learning techniques such as the recurrent neural network (RNN) and the long short-term memory (LSTM),which are effective learning models for training data, with the LSTM being better at recognizing longer-term associations. The proposed approach is implemented in Python and validated for benchmark datasets. The results verify the applicability of the proposed approach for the accurate prediction of cryptocurrency price.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 790
Author(s):  
Gilseung Ahn ◽  
Hwanchul Lee ◽  
Jisu Park ◽  
Sun Hur

Diagnosis of bearing faults is crucial in various industries. Time series classification (TSC) assigns each time series to one of a set of pre-defined classes, such as normal and fault, and has been regarded as an appropriate approach for bearing fault diagnosis. Considering late and inaccurate fault diagnosis may have a significant impact on maintenance costs, it is important to classify bearing signals as early and accurately as possible. TSC, however, has a major limitation, which is that a time series cannot be classified until the entire series is collected, implying that a fault cannot be diagnosed using TSC in advance. Therefore, it is important to classify a partially collected time series for early time series classification (ESTC), which is a TSC that considers both accuracy and earliness. Feature-based TSCs can handle this, but the problem is to determine whether a partially collected time series is enough for a decision that is still unsolved. Motivated by this, we propose an indicator of data sufficiency to determine whether a feature-based fault detection classifier can start classifying partially collected signals in order to diagnose bearing faults as early and accurately as possible. The indicator is trained based on the cosine similarity between signals that were collected fully and partially as input to the classifier. In addition, a parameter setting method for efficiently training the indicator is also proposed. The results of experiments using four benchmark datasets verified that the proposed indicator increased both accuracy and earliness compared with the previous time series classification method and general time series classification.


2012 ◽  
Vol 24 (10) ◽  
pp. 2678-2699 ◽  
Author(s):  
Taro Toyoizumi

Many cognitive processes rely on the ability of the brain to hold sequences of events in short-term memory. Recent studies have revealed that such memory can be read out from the transient dynamics of a network of neurons. However, the memory performance of such a network in buffering past information has been rigorously estimated only in networks of linear neurons. When signal gain is kept low, so that neurons operate primarily in the linear part of their response nonlinearity, the memory lifetime is bounded by the square root of the network size. In this work, I demonstrate that it is possible to achieve a memory lifetime almost proportional to the network size, “an extensive memory lifetime,” when the nonlinearity of neurons is appropriately used. The analysis of neural activity revealed that nonlinear dynamics prevented the accumulation of noise by partially removing noise in each time step. With this error-correcting mechanism, I demonstrate that a memory lifetime of order [Formula: see text] can be achieved.


Sign in / Sign up

Export Citation Format

Share Document