scholarly journals Abstract Rule Based Pattern Learning with Neural Networks

2020 ◽  
Vol 34 (10) ◽  
pp. 13718-13719
Author(s):  
Radha Manisha Kopparti

In this research work, the problem of learning abstract rules using neural networks is studied and a solution called ‘Relation Based Patterns’ (RBP) which model abstract relationships based on equality is proposed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lev Krasnov ◽  
Ivan Khokhlov ◽  
Maxim V. Fedorov ◽  
Sergey Sosnin

AbstractWe developed a Transformer-based artificial neural approach to translate between SMILES and IUPAC chemical notations: Struct2IUPAC and IUPAC2Struct. The overall performance level of our model is comparable to the rule-based solutions. We proved that the accuracy and speed of computations as well as the robustness of the model allow to use it in production. Our showcase demonstrates that a neural-based solution can facilitate rapid development keeping the required level of accuracy. We believe that our findings will inspire other developers to reduce development costs by replacing complex rule-based solutions with neural-based ones.


2021 ◽  
Vol 7 (15) ◽  
pp. eabe4166
Author(s):  
Philippe Schwaller ◽  
Benjamin Hoover ◽  
Jean-Louis Reymond ◽  
Hendrik Strobelt ◽  
Teodoro Laino

Humans use different domain languages to represent, explore, and communicate scientific concepts. During the last few hundred years, chemists compiled the language of chemical synthesis inferring a series of “reaction rules” from knowing how atoms rearrange during a chemical transformation, a process called atom-mapping. Atom-mapping is a laborious experimental task and, when tackled with computational methods, requires continuous annotation of chemical reactions and the extension of logically consistent directives. Here, we demonstrate that Transformer Neural Networks learn atom-mapping information between products and reactants without supervision or human labeling. Using the Transformer attention weights, we build a chemically agnostic, attention-guided reaction mapper and extract coherent chemical grammar from unannotated sets of reactions. Our method shows remarkable performance in terms of accuracy and speed, even for strongly imbalanced and chemically complex reactions with nontrivial atom-mapping. It provides the missing link between data-driven and rule-based approaches for numerous chemical reaction tasks.


2016 ◽  
Vol 16 (2) ◽  
pp. 43-50 ◽  
Author(s):  
Samander Ali Malik ◽  
Assad Farooq ◽  
Thomas Gereke ◽  
Chokri Cherif

Abstract The present research work was carried out to develop the prediction models for blended ring spun yarn evenness and tensile parameters using artificial neural networks (ANNs) and multiple linear regression (MLR). Polyester/cotton blend ratio, twist multiplier, back roller hardness and break draft ratio were used as input parameters to predict yarn evenness in terms of CVm% and yarn tensile properties in terms of tenacity and elongation. Feed forward neural networks with Bayesian regularisation support were successfully trained and tested using the available experimental data. The coefficients of determination of ANN and regression models indicate that there is a strong correlation between the measured and predicted yarn characteristics with an acceptable mean absolute error values. The comparative analysis of two modelling techniques shows that the ANNs perform better than the MLR models. The relative importance of input variables was determined using rank analysis through input saliency test on optimised ANN models and standardised coefficients of regression models. These models are suitable for yarn manufacturers and can be used within the investigated knowledge domain.


Technologies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 110 ◽  
Author(s):  
Gadelhag Mohmed ◽  
Ahmad Lotfi ◽  
Amir Pourabdollah

Human activity recognition and modelling comprise an area of research interest that has been tackled by many researchers. The application of different machine learning techniques including regression analysis, deep learning neural networks, and fuzzy rule-based models has already been investigated. In this paper, a novel method based on Fuzzy Finite State Machine (FFSM) integrated with the learning capabilities of Neural Networks (NNs) is proposed to represent human activities in an intelligent environment. The proposed approach, called Neuro-Fuzzy Finite State Machine (N-FFSM), is able to learn the parameters of a rule-based fuzzy system, which processes the numerical input/output data gathered from the sensors and/or human experts’ knowledge. Generating fuzzy rules that represent the transition between states leads to assigning a degree of transition from one state to another. Experimental results are presented to demonstrate the effectiveness of the proposed method. The model is tested and evaluated using a dataset collected from a real home environment. The results show the effectiveness of using this method for modelling the activities of daily living based on ambient sensory datasets. The performance of the proposed method is compared with the standard NNs and FFSM techniques.


Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


2017 ◽  
Vol 8 (2) ◽  
pp. 26-42 ◽  
Author(s):  
Md. Majharul Haque ◽  
Suraiya Pervin ◽  
Zerina Begum

The object of this research work is to replace pronoun by corresponding noun for Bangla news documents. To the best of our knowledge, this is the first initiative to solve the problem of dangling pronoun where corresponding noun is not available. If the information retrieval procedures extract any sentence with dangling pronoun, it may raise confusion to the user. To mitigate this problem, a method has been proposed here by using general and special tagging, dependency parsing, full name identifying and finally pronoun replacing. For achieving the target of this method, 3000 Bangla news documents have been analyzed and some grammar books have been studied. Seven knowledgeable persons in the arena of Bangla language also helped us in this research work. Finally, the proposed method shows 71.80% accuracy in the evaluation for replacing pronoun.


2021 ◽  
Vol 7 (3) ◽  
pp. 22-29
Author(s):  
Kajol Singh ◽  
Manish Saxena

The images captured through a camera usually belong to over or under exposed conditions. The reason may be inappropriate lighting conditions or camera resolution. Hence, it is of utmost importance to have a few enhancement techniques that could make these artefacts look better. Hence, the primary objective pertaining to the adjustment and enhancement techniques is to enhance the characteristics of an image. The initial numeric values related to an image get distorted when an image is enhanced. Therefore, enhancement techniques should be designed in such a way that the image quality isn’t compromised. This research work is focused on proposed a network design for deep convolution neural networks for application of super resolution techniques. To improve the complexity of existing techniques this work is intended towards network designs, different filter size and CNN architecture. The CNN model is most effective model for detection and segmentation in image. This model will improve the efficiency of medical image reconstruction from LR to HR. The proposed model showed its efficiency not only PET medical images but also on retinal database and achieved advance results as compared to existing works.


2021 ◽  
Vol 9 (2) ◽  
pp. 1022-1030
Author(s):  
Shivakumar. C, Et. al.

In this Context-aware computing era, everything is being automated and because of this, smart system’s count been incrementing day by day.  The smart system is all about context awareness, which is a synergy with the objects in the system. The result of the interaction between the users and the sensors is nothing but the repository of the vast amount of context data. Now the challenging task is to represent, store, and retrieve context data. So, in this research work, we have provided solutions to context storage. Since the data generated from the sensor network is dynamic, we have represented data using Context dimension tree, stored the data in cloud-based ‘MongoDB’, which is a NoSQL. It provides dynamic schema and reasoning data using If-Then rules with RETE algorithm. The Novel research work is the integration of NoSQL cloud-based MongoDB, rule-based RETE algorithm and CLIPS tool architecture. This integration helps us to represent, store, retrieve and derive inferences from the context data efficiently..                       


Sign in / Sign up

Export Citation Format

Share Document