The Special Issue of AI Magazine on Structured Knowledge Transfer

AI Magazine ◽  
2011 ◽  
Vol 32 (1) ◽  
pp. 12 ◽  
Author(s):  
Daniel G. Shapiro ◽  
Hector Munoz-Avila ◽  
David Stracuzzi

This issue summarizes the state of the art in structured knowledge transfer, which is an emerging approach to the general problem of knowledge acquisition and reuse. Its goal is to capture, in a general form, the internal structure of the objects, relations, strategies, and processes used to solve tasks drawn from a source domain, and exploit that knowledge to improve performance in a target domain.

Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


Author(s):  
Yonghao Xu ◽  
Bo Du ◽  
Lefei Zhang ◽  
Qian Zhang ◽  
Guoli Wang ◽  
...  

Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.


2021 ◽  
Author(s):  
Shuo Jiang ◽  
Jie Hu ◽  
Jianxi Luo

Abstract Design-by-Analogy (DbA) is a design methodology that draws inspiration from a source domain to a target domain to generate new solutions to problems or designs, which can benefit designers in mitigating design fixation and improving design ideation outcomes. Recently, the increasingly available design databases and rapidly advancing data science and artificial intelligence technologies have presented new opportunities for developing data-driven methods and tools for DbA support. Herein, we survey the prior data-driven DbA studies and categorize and analyze individual study according to the data, methods and applications in four categories including analogy encoding, retrieval, mapping, and evaluation. Based on such structured literature analysis, this paper elucidates the state of the art of data-driven DbA research to date and benchmarks it with the frontier of data science and AI research to identify promising research opportunities and directions for the field.


2021 ◽  
Author(s):  
Tien Tai Doan ◽  
Guillaume Ghyselinck ◽  
Blaise Hanczar

We propose a new method of multimodal image translation, called InfoMUNIT, which is an extension of the state-of-the-art method MUNIT. Our method allows controlling the style of the generated images and improves their quality and diversity. It learns to maximize the mutual information between a subset of style code and the distribution of the output images. Experiments show that our model cannot only translate one image from the source domain to multiple images in the target domain but also explore and manipulate features of the outputs without annotation. Furthermore, it achieves a superior diversity and a competitive image quality to state-of-the-art methods in multiple image translation tasks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253415
Author(s):  
Hyunsik Jeon ◽  
Seongmin Lee ◽  
U Kang

Given trained models from multiple source domains, how can we predict the labels of unlabeled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims for predicting the labels of unlabeled target data by transferring the knowledge of multiple source domains. UMDA is a crucial problem in many real-world scenarios where no labeled target data are available. Previous approaches in UMDA assume that data are observable over all domains. However, source data are not easily accessible due to privacy or confidentiality issues in a lot of practical scenarios, although classifiers learned in source domains are readily available. In this work, we target data-free UMDA where source data are not observable at all, a novel problem that has not been studied before despite being very realistic and crucial. To solve data-free UMDA, we propose DEMS (Data-free Exploitation of Multiple Sources), a novel architecture that adapts target data to source domains without exploiting any source data, and estimates the target labels by exploiting pre-trained source classifiers. Extensive experiments for data-free UMDA on real-world datasets show that DEMS provides the state-of-the-art accuracy which is up to 27.5% point higher than that of the best baseline.


2020 ◽  
Vol 34 (05) ◽  
pp. 9362-9369 ◽  
Author(s):  
Qianming Xue ◽  
Wei Zhang ◽  
Hongyuan Zha

Domain-adapted sentiment classification refers to training on a labeled source domain to well infer document-level sentiment on an unlabeled target domain. Most existing relevant models involve a feature extractor and a sentiment classifier, where the feature extractor works towards learning domain-invariant features from both domains, and the sentiment classifier is trained only on the source domain to guide the feature extractor. As such, they lack a mechanism to use sentiment polarity lying in the target domain. To improve domain-adapted sentiment classification by learning sentiment from the target domain as well, we devise a novel deep adversarial mutual learning approach involving two groups of feature extractors, domain discriminators, sentiment classifiers, and label probers. The domain discriminators enable the feature extractors to obtain domain-invariant features. Meanwhile, the label prober in each group explores document sentiment polarity of the target domain through the sentiment prediction generated by the classifier in the peer group, and guides the learning of the feature extractor in its own group. The proposed approach achieves the mutual learning of the two groups in an end-to-end manner. Experiments on multiple public datasets indicate our method obtains the state-of-the-art performance, validating the effectiveness of mutual learning through label probers.


Author(s):  
Yang Shu ◽  
Zhangjie Cao ◽  
Mingsheng Long ◽  
Jianmin Wang

Domain adaptation improves a target task by knowledge transfer from a source domain with rich annotations. It is not uncommon that “source-domain engineering” becomes a cumbersome process in domain adaptation: the high-quality source domains highly related to the target domain are hardly available. Thus, weakly-supervised domain adaptation has been introduced to address this difficulty, where we can tolerate the source domain with noises in labels, features, or both. As such, for a particular target task, we simply collect the source domain with coarse labeling or corrupted data. In this paper, we try to address two entangled challenges of weaklysupervised domain adaptation: sample noises of the source domain and distribution shift across domains. To disentangle these challenges, a Transferable Curriculum Learning (TCL) approach is proposed to train the deep networks, guided by a transferable curriculum informing which of the source examples are noiseless and transferable. The approach enhances positive transfer from clean source examples to the target and mitigates negative transfer of noisy source examples. A thorough evaluation shows that our approach significantly outperforms the state-of-the-art on weakly-supervised domain adaptation tasks.


2021 ◽  
Author(s):  
Zhimeng Yang ◽  
Zirui Wu ◽  
Ming Zeng ◽  
Yazhou Ren ◽  
Xiaorong Pu ◽  
...  

<div>By transferring knowledge from a source domain, the performance of deep clustering on an unlabeled target domain can be improved. When achieving this, traditional approaches make the assumption that adequate amount of labeled data is available in a source domain. However, this assumption is usually unrealistic in practice. The source domain should be carefully selected to share some characteristics with the target domain, and it can not be guaranteed that rich labeled samples are always available in the selected source domain.</div><div>We propose a novel framework to improve deep clustering by transferring knowledge from a source domain without any labeled data. To select reliable instances in the source domain for transferring, we propose a novel adaptive threshold algorithm to select low entropy instances. To transfer important features of the selected instances, we propose a feature-level domain adaptation network (FeatureDA) which cancels unstable generation process. With extensive experiments, we validate that our method effectively improves deep clustering, without using any labeled data in the source domain. Besides, without using any labeled data in the source domain, our method achieves competitive results, compared to the state-of-the-art methods using labeled data in the source domain.</div>


2020 ◽  
Vol 34 (04) ◽  
pp. 4099-4106
Author(s):  
Yuwei He ◽  
Xiaoming Jin ◽  
Guiguang Ding ◽  
Yuchen Guo ◽  
Jungong Han ◽  
...  

Instance-correspondence (IC) data are potent resources for heterogeneous transfer learning (HeTL) due to the capability of bridging the source and the target domains at the instance-level. To this end, people tend to use machine-generated IC data, because manually establishing IC data is expensive and primitive. However, existing IC data machine generators are not perfect and always produce the data that are not of high quality, thus hampering the performance of domain adaption. In this paper, instead of improving the IC data generator, which might not be an optimal way, we accept the fact that data quality variation does exist but find a better way to use the data. Specifically, we propose a novel heterogeneous transfer learning method named Transfer Learning with Weighted Correspondence (TLWC), which utilizes IC data to adapt the source domain to the target domain. Rather than treating IC data equally, TLWC can assign solid weights to each IC data pair depending on the quality of the data. We conduct extensive experiments on HeTL datasets and the state-of-the-art results verify the effectiveness of TLWC.


Author(s):  
Sitong Su ◽  
Jingkuan Song ◽  
Lianli Gao ◽  
Junchen Zhu

Replacing objects in images is a practical functionality of Photoshop, e.g., clothes changing. This task is defined as Unsupervised Deformable-Instances Image-to-Image Translation (UDIT), which maps multiple foreground instances of a source domain to a target domain, involving significant changes in shape. In this paper, we propose an effective pipeline named Mask-Guided Deformable-instances GAN (MGD-GAN) which first generates target masks in batch and then utilizes them to synthesize corresponding instances on the background image, with all instances efficiently translated and background well preserved. To promote the quality of synthesized images and stabilize the training, we design an elegant training procedure which transforms the unsupervised mask-to-instance process into a supervised way by creating paired examples. To objectively evaluate the performance of UDIT task, we design new evaluation metrics which are based on the object detection. Extensive experiments on four datasets demonstrate the significant advantages of our MGD-GAN over existing methods both quantitatively and qualitatively. Furthermore, our training time consumption is hugely reduced compared to the state-of-the-art. The code could be available at https://github.com/sitongsu/MGD_GAN.


Sign in / Sign up

Export Citation Format

Share Document