scholarly journals Induction and Exploitation of Subgoal Automata for Reinforcement Learning

2021 ◽  
Vol 70 ◽  
pp. 1031-1116
Author(s):  
Daniel Furelos-Blanco ◽  
Mark Law ◽  
Anders Jonsson ◽  
Krysia Broda ◽  
Alessandra Russo

In this paper we present ISA, an approach for learning and exploiting subgoals in episodic reinforcement learning (RL) tasks. ISA interleaves reinforcement learning with the induction of a subgoal automaton, an automaton whose edges are labeled by the task’s subgoals expressed as propositional logic formulas over a set of high-level events. A subgoal automaton also consists of two special states: a state indicating the successful completion of the task, and a state indicating that the task has finished without succeeding. A state-of-the-art inductive logic programming system is used to learn a subgoal automaton that covers the traces of high-level events observed by the RL agent. When the currently exploited automaton does not correctly recognize a trace, the automaton learner induces a new automaton that covers that trace. The interleaving process guarantees the induction of automata with the minimum number of states, and applies a symmetry breaking mechanism to shrink the search space whilst remaining complete. We evaluate ISA in several gridworld and continuous state space problems using different RL algorithms that leverage the automaton structures. We provide an in-depth empirical analysis of the automaton learning performance in terms of the traces, the symmetry breaking and specific restrictions imposed on the final learnable automaton. For each class of RL problem, we show that the learned automata can be successfully exploited to learn policies that reach the goal, achieving an average reward comparable to the case where automata are not learned but handcrafted and given beforehand.

2020 ◽  
Vol 34 (04) ◽  
pp. 3890-3897
Author(s):  
Daniel Furelos-Blanco ◽  
Mark Law ◽  
Alessandra Russo ◽  
Krysia Broda ◽  
Anders Jonsson

In this work we present ISA, a novel approach for learning and exploiting subgoals in reinforcement learning (RL). Our method relies on inducing an automaton whose transitions are subgoals expressed as propositional formulas over a set of observable events. A state-of-the-art inductive logic programming system is used to learn the automaton from observation traces perceived by the RL agent. The reinforcement learning and automaton learning processes are interleaved: a new refined automaton is learned whenever the RL agent generates a trace not recognized by the current automaton. We evaluate ISA in several gridworld problems and show that it performs similarly to a method for which automata are given in advance. We also show that the learned automata can be exploited to speed up convergence through reward shaping and transfer learning across multiple tasks. Finally, we analyze the running time and the number of traces that ISA needs to learn an automata, and the impact that the number of observable events have on the learner's performance.


Author(s):  
ESTEBAN O. GARCÍA ◽  
ENRIQUE MUNOZ DE COTE ◽  
EDUARDO F. MORALES

Transfer learning focuses on developing methods to reuse information gathered from a source task in order to improve the learning performance in a related task. In this work, we present a novel approach to transfer knowledge between tasks in a reinforcement learning (RL) framework with continuous states and actions, where the transition and policy functions are approximated by Gaussian processes. The novelty in the proposed approach lies in the idea of transferring information about the hyper-parameters of the state transition function from the source task, which represents qualitative knowledge about the type of transition function that the target task might have, constraining the search space and accelerating the learning process. We performed experiments on relevant tasks for RL, which show a clear improvement in the overall performance when compared to state-of-the-art reinforcement learning and transfer learning algorithms for continuous state and action spaces.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1576 ◽  
Author(s):  
Xiaomao Zhou ◽  
Tao Bai ◽  
Yanbin Gao ◽  
Yuntao Han

Extensive studies have shown that many animals’ capability of forming spatial representations for self-localization, path planning, and navigation relies on the functionalities of place and head-direction (HD) cells in the hippocampus. Although there are numerous hippocampal modeling approaches, only a few span the wide functionalities ranging from processing raw sensory signals to planning and action generation. This paper presents a vision-based navigation system that involves generating place and HD cells through learning from visual images, building topological maps based on learned cell representations and performing navigation using hierarchical reinforcement learning. First, place and HD cells are trained from sequences of visual stimuli in an unsupervised learning fashion. A modified Slow Feature Analysis (SFA) algorithm is proposed to learn different cell types in an intentional way by restricting their learning to separate phases of the spatial exploration. Then, to extract the encoded metric information from these unsupervised learning representations, a self-organized learning algorithm is adopted to learn over the emerged cell activities and to generate topological maps that reveal the topology of the environment and information about a robot’s head direction, respectively. This enables the robot to perform self-localization and orientation detection based on the generated maps. Finally, goal-directed navigation is performed using reinforcement learning in continuous state spaces which are represented by the population activities of place cells. In particular, considering that the topological map provides a natural hierarchical representation of the environment, hierarchical reinforcement learning (HRL) is used to exploit this hierarchy to accelerate learning. The HRL works on different spatial scales, where a high-level policy learns to select subgoals and a low-level policy learns over primitive actions to specialize on the selected subgoals. Experimental results demonstrate that our system is able to navigate a robot to the desired position effectively, and the HRL shows a much better learning performance than the standard RL in solving our navigation tasks.


Author(s):  
Andrew Cropper

Children learn though play. We introduce the analogous idea of learning programs through play. In this approach, a program induction system (the learner) is given a set of user-supplied build tasks and initial background knowledge (BK). Before solving the build tasks, the learner enters an unsupervised playing stage where it creates its own play tasks to solve, tries to solve them, and saves any solutions (programs) to the BK. After the playing stage is finished, the learner enters the supervised building stage where it tries to solve the build tasks and can reuse solutions learnt whilst playing. The idea is that playing allows the learner to discover reusable general programs on its own which can then help solve the build tasks. We claim that playing can improve learning performance. We show that playing can reduce the textual complexity of target concepts which in turn reduces the sample complexity of a learner. We implement our idea in Playgol, a new inductive logic programming system. We experimentally test our claim on two domains: robot planning and real-world string transformations. Our experimental results suggest that playing can substantially improve learning performance.


Author(s):  
Rundong Wang ◽  
Runsheng Yu ◽  
Bo An ◽  
Zinovi Rabinovich

Hierarchical reinforcement learning (HRL) is a promising approach to solve tasks with long time horizons and sparse rewards. It is often implemented as a high-level policy assigning subgoals to a low-level policy. However, it suffers the high-level non-stationarity problem since the low-level policy is constantly changing. The non-stationarity also leads to the data efficiency problem: policies need more data at non-stationary states to stabilize training. To address these issues, we propose a novel HRL method: Interactive Influence-based Hierarchical Reinforcement Learning (I^2HRL). First, inspired by agent modeling, we enable the interaction between the low-level and high-level policies to stabilize the high-level policy training. The high-level policy makes decisions conditioned on the received low-level policy representation as well as the state of the environment. Second, we furthermore stabilize the high-level policy via an information-theoretic regularization with minimal dependence on the changing low-level policy. Third, we propose the influence-based exploration to more frequently visit the non-stationary states where more transition data is needed. We experimentally validate the effectiveness of the proposed solution in several tasks in MuJoCo domains by demonstrating that our approach can significantly boost the learning performance and accelerate learning compared with state-of-the-art HRL methods.


2021 ◽  
Vol 11 (3) ◽  
pp. 1291
Author(s):  
Bonwoo Gu ◽  
Yunsick Sung

Gomoku is a two-player board game that originated in ancient China. There are various cases of developing Gomoku using artificial intelligence, such as a genetic algorithm and a tree search algorithm. Alpha-Gomoku, Gomoku AI built with Alpha-Go’s algorithm, defines all possible situations in the Gomoku board using Monte-Carlo tree search (MCTS), and minimizes the probability of learning other correct answers in the duplicated Gomoku board situation. However, in the tree search algorithm, the accuracy drops, because the classification criteria are manually set. In this paper, we propose an improved reinforcement learning-based high-level decision approach using convolutional neural networks (CNN). The proposed algorithm expresses each state as One-Hot Encoding based vectors and determines the state of the Gomoku board by combining the similar state of One-Hot Encoding based vectors. Thus, in a case where a stone that is determined by CNN has already been placed or cannot be placed, we suggest a method for selecting an alternative. We verify the proposed method of Gomoku AI in GuPyEngine, a Python-based 3D simulation platform.


Author(s):  
Jie Zhong ◽  
Tao Wang ◽  
Lianglun Cheng

AbstractIn actual welding scenarios, an effective path planner is needed to find a collision-free path in the configuration space for the welding manipulator with obstacles around. However, as a state-of-the-art method, the sampling-based planner only satisfies the probability completeness and its computational complexity is sensitive with state dimension. In this paper, we propose a path planner for welding manipulators based on deep reinforcement learning for solving path planning problems in high-dimensional continuous state and action spaces. Compared with the sampling-based method, it is more robust and is less sensitive with state dimension. In detail, to improve the learning efficiency, we introduce the inverse kinematics module to provide prior knowledge while a gain module is also designed to avoid the local optimal policy, we integrate them into the training algorithm. To evaluate our proposed planning algorithm in multiple dimensions, we conducted multiple sets of path planning experiments for welding manipulators. The results show that our method not only improves the convergence performance but also is superior in terms of optimality and robustness of planning compared with most other planning algorithms.


2021 ◽  
Vol 31 (3) ◽  
pp. 1-26
Author(s):  
Aravind Balakrishnan ◽  
Jaeyoung Lee ◽  
Ashish Gaurav ◽  
Krzysztof Czarnecki ◽  
Sean Sedwards

Reinforcement learning (RL) is an attractive way to implement high-level decision-making policies for autonomous driving, but learning directly from a real vehicle or a high-fidelity simulator is variously infeasible. We therefore consider the problem of transfer reinforcement learning and study how a policy learned in a simple environment using WiseMove can be transferred to our high-fidelity simulator, W ise M ove . WiseMove is a framework to study safety and other aspects of RL for autonomous driving. W ise M ove accurately reproduces the dynamics and software stack of our real vehicle. We find that the accurately modelled perception errors in W ise M ove contribute the most to the transfer problem. These errors, when even naively modelled in WiseMove , provide an RL policy that performs better in W ise M ove than a hand-crafted rule-based policy. Applying domain randomization to the environment in WiseMove yields an even better policy. The final RL policy reduces the failures due to perception errors from 10% to 2.75%. We also observe that the RL policy has significantly less reliance on velocity compared to the rule-based policy, having learned that its measurement is unreliable.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ogbonnaya Anicho ◽  
Philip B. Charlesworth ◽  
Gurvinder S. Baicher ◽  
Atulya K. Nagar

AbstractThis work analyses the performance of Reinforcement Learning (RL) versus Swarm Intelligence (SI) for coordinating multiple unmanned High Altitude Platform Stations (HAPS) for communications area coverage. It builds upon previous work which looked at various elements of both algorithms. The main aim of this paper is to address the continuous state-space challenge within this work by using partitioning to manage the high dimensionality problem. This enabled comparing the performance of the classical cases of both RL and SI establishing a baseline for future comparisons of improved versions. From previous work, SI was observed to perform better across various key performance indicators. However, after tuning parameters and empirically choosing suitable partitioning ratio for the RL state space, it was observed that the SI algorithm still maintained superior coordination capability by achieving higher mean overall user coverage (about 20% better than the RL algorithm), in addition to faster convergence rates. Though the RL technique showed better average peak user coverage, the unpredictable coverage dip was a key weakness, making SI a more suitable algorithm within the context of this work.


Sign in / Sign up

Export Citation Format

Share Document